浅地中環境下におけるウラン系列核種の分配係数測定() -分配係数の pH 依存性-

坂本義昭1 石井友章2 稲川駿3 軍司康義2 武部慎一4 小川弘道1 佐々木朋三5

ウラン廃棄物の浅地中処分の安全評価において必要となる通気層環境(ローム-雨水系)および帯水層環境(砂-地 下水系)でのウランおよびウラン娘核種である Pb, Ra, Ac, Th, Pa, U の分配係数の pH 依存性を求め、これらの元素の収着 形態について検討を行った. Pb, Ra, Ac, Th, Pa, U の分配係数の pH 依存性に対して、各元素の存在形態と土の陽イオン交 換容量および表面電位特性を基にして、陽イオン交換反応および表面錯体形成反応を組み合わせた収着反応のモデル計 算を行った結果、各元素に対する収着挙動とその分配係数をおおむね表すことが可能であることを示した. Keywords:ウラン廃棄物、浅地中環境、ウラン、ウラン系列核種、通気層環境、帯水層環境、分配係数, pH 依存性

In order to study sorption behavior of U series radionuclides (Pb, Ra, Th, Ac, Pa and U) under aerated zone environment (loam-rain water system) and aquifer environment (sand-groundwater system) for safety assessment of U bearing waste, pH dependence of distribution coefficients of each element has been obtained. The pH dependence of distribution coefficients of Pb, Ra, Th, Ac and U was analyzed by model calculation based on aqueous speciation of each element and soil surface charge characteristics, which is composed of a cation exchange capacity and surface hydroxyl groups. From the model calculation, the sorption behavior of Pb, Ra, Th, Ac and U could be described by a combination of cation exchange reaction and surface-complexation model.

Keywords : Uranium bearing waste, Shallow land disposal, Uranium, U series radionuclides, Aerated zone environment, Aquifer environment, Distribution coefficient, pH dependence

1 緒言

ウラン廃棄物の浅地中処分の安全評価では、U およびそ の娘核種の土に対する分配係数を取得・整備することが必 要となる.このため、前報では各種の土および地下水条件 に対する Pb, Ra, Ac, Th, Pa, Uの分配係数を測定した結果を 示した[1].この検討では、土と地下水の平衡状態での分 配係数を測定し、一部の元素については土の物性値である 陽イオン交換容量や比表面積と分配係数の間に相関が認 められることを示したが、UやAcについてはこれらの物性 値との相関は見られず溶液の pH による影響が大きい可能 性が示唆された[1].そこで、本報では土物性値のみなら ず pH が分配係数におよぼす影響についても明らかにする ことを目的とした.ここでは、Pb, Ra, Ac, Th, Pa, Uの分配 係数の pH 依存性を測定するとともに、これらの元素の収 着挙動について検討を行った.

各種の放射性核種の分配係数が pH により変動すること

は古くから示されており[2],陽イオン交換を基にして放 射性核種の分配係数の pH 依存性についての検討[3]や鉱物 表面への収着挙動に関して表面錯体モデルを用いた検討 がなされてきた[4]. U については Hsi and Langmuir[5]によ って各種の条件下での pH と収着挙動の関係について詳細 な解析が行われており、その他の多くの報告でも収着率の pH 依存性についての検討が行われてきた[6-8]. Pb, Th に ついては、その収着挙動について、収着等温による解析や 収着の pH 依存性について表面錯体モデルを用いた解析が なされている[2,9-12]. Ra については, Meier や Baraniak ら[13,14]によって調べられており、その収着挙動は主に陽 イオン交換反応と表面錯体形成反応により表されること が示されている. Pa については, Berry ら[15]や Nakayama ら[16]によりコロイド形成と分配係数の関係について、 Allard ら[2]によって分配係数の pH 依存性が調べられてい る[2] . Ac については, Lieser ら[17]が収着の pH 依存性と コロイド形成の関係等について述べている.しかし、これ らの検討の多くは鉱物試料を対象としたものであり、安全 評価に用いる分配係数の評価を目的として実環境を模擬 した条件での検討例は少ない.

そこで本研究ではこれらの過去の検討例を参考として、 前報[1]で用いた土試料のうち通気層環境の代表例として ローム(ローム(I))、帯水層環境の代表例として砂(砂(I))を 選択し、この2種類の土試料に対する Pb, Ra, Ac, Th, Pa, U の分配係数の pH 依存性をバッチ法により測定した. さら に、その結果に対して各元素の収着挙動を検討するため、 陽イオン交換と表面錯形成による収着反応を用いた解析 を試みた.

Measurement of distribution coefficients of U series radionuclides on soils under shallow land environment(II) -pH dependence of distribution coefficients – by Yoshiaki Sakamoto (sakamoto@sparclt.tokai.jaeri.go.jp), Tomoaki Ishii, Satoshi Inagawa, Yasuyoshi Gunji, Shinichi Takebe, Hiromichi Ogawa, Tomozou Sasaki.

¹ 日本原子力研究所燃料サイクル安全工学部処分安全研究室 Japan Atomic Energy Research Institute, Department of Fuel Cycle Safety Research, Disposal Safety Laboratory〒319-1195 茨城県那珂郡東海村白方白根 2-4

² 原子燃料工業 環境安全部 Nuclear Fuel Industries, LTD., Environmental and Safety Management Department 〒319-1196 茨城県那珂郡東海村村松 3135-41

³ 原子燃料工業 事業開発部 Nuclear Fuel Industries, LTD., Technical Development Department 〒590-1196 大阪府泉南郡熊取町大字野田 950

⁴ 日本原子力研究所バックエンド技術部処分技術課 Japan Atomic Energy Research Institute, Department of Decommissioning and Waste Management, Division of Disposal Technology 〒319-1195 茨城県那珂郡東海村白方白 根 2-4

⁵ 原子力環境整備促進・資金管理センター 浅地処分システム研究部 Radioactive Waste Management Funding and Research Center, Research Division of Shallow land Disposal 〒105-0001 東京都港区虎ノ門2丁目8 番10号

Soils	Specific surface	CEC			Major clay minerals					
	area(m ² /g)	(meq/100g)	SiO ₂	Na ₂ O	K ₂ O	CaO	Al ₂ O ₃	Fe _{total}	P_2O_4	Major cray minerais
Loam	99.5	15.5	79.7	0.06	0.17	0.22	11.7	5.35	< 0.01	Kaolinite, Halloysite
Sand	6.33	4.3	86.2	0.30	0.24	0.97	5.69	2.34	< 0.01	Kaolinite, Smectite

Table 1 Phisyco-chemical characteristics of soil samples

Fe_{total}:sum of Fe(II) and Fe(III)

2 実験

2.1 土**試料**

本研究で用いた土試料としては、前報で示した土試料 [1]のうち、通気層土の代表例としてローム(I)(以下,ローム)、 帯水層土の代表例として砂(I)(以下,砂)を選択した.これ らの試料は、採取後風乾して 2mm 以上のレキ成分を篩に より取り除き実験に供した.これらの試料の物理化学特 性を Table 1 に示す[1].ローム中の粘土鉱物としては、カ オリナイト、ハロイサイト等が主に含まれており、砂には カオリナイト、スメクタイト等が主に含まれている.

2.2 溶液試料

本研究で用いた溶液試料は、通気層に浸透する雨水および帯水層を流れる地下水を想定した2種類を用いた.雨水には空気中の炭酸等が溶存しているので、ここでは脱イオン水を1日以上大気に曝したものを模擬雨水として用いた[1].この模擬雨水を用いたAc,ThおよびPaの試験では、購入した各放射性核種の原液のpH調整のため添加されたNaOHによりNa⁺濃度が、Acで約230mg/l,Thで約200mg/l,Paで約100mg/lとなった.したがって、Ac,ThおよびPaの試験での模擬雨水系での溶液中共存イオンの濃度は、U,Ra,Pbと大きく異なるものである.また,pH依存性を求める際に1MNaOHを添加したため、全ての元素でNa⁺濃度に10~80mg/l 程度の変動があった.

また、帯水層中を流れる地下水としては、砂を採取した 周辺の天然の湧水試料を採取した後、10µm、1µm、0.45µm のフィルターで順次濾過したものを実験に供した[1]. 湧 水試料にも pH 調整のために NaOH が模擬雨水と同程度添 加されている. これらの溶液試料の化学特性を Table 2 に 示す[1].

2.3 pH 依存性試験

土試料に対する各元素の収着実験は、すべてバッチ法に より行った.土試料と溶液試料の組み合わせとしては、通 気層環境の模擬としてローム - 模擬雨水、帯水層環境の模 擬として砂 - 湧水とした.これは、なるべく実環境に近い 土-溶液試料の組み合わせにおける放射性核種の収着挙動 を模擬して設定したものである. 固液比は、Th、Pb につい ては 1g/100ml、U については 5g/50ml、Ra については 0.8g/8ml, Ac, Pa は 0.3g/30ml とした.これらは、分配係数の 測定限界、放射性核種のハンドリングの必要性から設定し たものである. 収着実験容器は、U、Th、Pb についてはポリ プロピレン製遠心沈澱管、Ra、Ac、Pa については、テフロン 製遠心沈澱管を用いた.なお、各元素の調整方法について は、前報に詳述したとおりである[1].

土試料と溶液試料を収着実験容器に入れ少量の放射性 核種または安定同位元素を添加するとともに、1M または 0.1M NaOH, 1M または 0.1M H₂SO₄, HNO₃ 溶液により所定 の pH に調整を行った. この試料を 15 に保った恒温振 とう機の中で 14 日間振とうを行った. なお、土試料が均 ーに攪拌されるよう、1日1回ハンドシェイクによる攪拌も 行った. 振とう終了後、試料を取り出して pH の測定を行 うとともに、0.45 µ m フィルタ(Advantec 東洋社製 DISMIC および Millipore 社製 Ultra-free)による濾過を行った. 濾 液中の各元素濃度を以下に述べる方法で測定し、収着前後 の元素濃度から各元素の分配係数を算出した.

各元素の初期濃度は、U(天然 U)4.2×10⁻⁵M, Th(天然 Th)4.3×10⁻⁷M, Pb(安定同位元素)4.9×10⁻⁶M, Ra(²²⁶Ra)1.2× 10⁻⁹M, Ac(²²⁷Ac)7.0×10⁻¹³M, Pa(²³³Pa)6.0×10⁻¹⁴M である. 各元素の濃度の測定は、U, Th, Pb については ICP-MS(Perkin Elmer ELAN 6100DRC), Ra, Ac, Pa について

Solution	ъЦ	Mg ²⁺	Ca ²⁺	Na ⁺	\mathbf{K}^{+}	Fe _{total}	SiO ₂	SO4 ²⁻	Cl	HCO ₃ -	Organic
Solution	рп										carbon
Artificial rain water	5.9	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.5	< 0.2	< 0.1	0.2	-
Groundwater	8.0	13.9	31.1	24.9	1.55	0.64	23.4	60.3	29.5	110	1.9

Table 2 Chemical composition of solution samples

Unit: mg/l(except pH)

Vol.8 No.1

は液体シンチレーションカウンタ(Packard Tri-curve 2000) を用いた.液体シンチレーションカウンタでの測定方法 については、前報での記載どおりである[1].また、各元素 の初期濃度については Table 2 に示した地下水組成におい て溶解度以下であることを地球化学計算コード CHESS(CHemical Equilibrium with Species and Surface)[18] および熱力学データ[19]を用いて確認した.

2.4 土の表面電荷特性

土の表面では結晶端面に存在するシラノール基等に起 因する表面水酸基において,水素イオンの収着解離反応に よって正電荷および負電荷が生じ、 陰イオンおよび陽イオ ンの収着サイトとして寄与している. この表面水酸基を S-OH として表すと、表面水酸基での水素イオンの収着解 離反応は以下の式で表される[20].

$$S-OH = S-O^{-} + H^{+}$$
(1)

 $S-OH + H^+ =$ $S-OH_2^+$ (2)

陽イオンの収着サイトとして機能するS-O-は、式(1)からわ かるよう pH の増加とともに増加して陽イオンの土への収 着反応の pH 依存性が生じる要因の1つとなる. そこで, 本研究で対象とした6元素の土への収着反応の解析のため、 必要となる式(1)および式(2)の平衡定数をそれぞれ Ka, Kb として、Ka, Kbおよび表面水酸基密度Nsを酸塩基滴定によ り求めた.

ここでは、0.01M NaClO₄溶液中でのロームおよび砂の酸 塩基滴定を 0.1M NaOH および 0.1M HCl 溶液を用いて、Ar ガス中で行った. Fig.1 にローム, 砂およびブランクの酸 塩基滴定曲線を示す.この滴定曲線を用いて、各 pH にお けるブランク溶液と水素イオンおよび水酸イオンの消費 量の差を求めることにより、Fig.2 に示すようなロームおよ び砂の表面電荷密度の pH 依存性を算出した.この結果に 対して、比較的単純なモデルである constant capacitance model を用いて解析を行い[20]、式(1)および(2)の平衡定数 *Ka*, *Kb* をおよび表面水酸基密度 *Ns*(mol/m²)を算出した.

固体表面の水素イオン濃度[H+]。と溶液中の水素イオン 濃度[H+]とは、

$[H^{+}]_{s} = [H^{+}] \exp(-\frac{0}{RT}) $ (3))
F:ファラデー定数(C/mol)	
R:ガス定数(J/mol/K)	
T:温度(K)	
で表される.ここで、constant capacitance model において	lt,
表面電荷密度 $_0$ が電位 $_0$ に一定の電気容量 C を比例定	数

勬 として比例すると,

Fig.1 Titration curve of loam and sand in 0.01M NaClO₄ solution

Fig.2 Surface charge of loam and sand

$$Ka = \frac{[S-O^{-}][H^{+}] \exp(-F_{0}/RT)}{[S-OH]}$$
(5)

$$Kb = \frac{[\text{S-OH}_2^+]}{[\text{S-OH}] [\text{H}^+] \exp(-F_{-0}/RT)}$$
(6)

と表される. 表面水酸基密度 Ns と表面電荷密度 。はそ れぞれのマスバランスから,

$$Ns = [S-OH] + [S-O^{-}] + [S-OH_2^{+}]$$
 (7)

$${}_{0}=F([S-OH_{2}^{+}]-[S-O^{-}])$$
(8)

これらの関係式(4)~(8)を解くと, pHと 0の関係は,

$$(_{0}-FNs)Kb \cdot \exp(-G _{0}) [H^{+}]^{2} + _{0} [H^{+}] + (_{0}+FNs)Ka \cdot \exp(G _{0}) = 0$$
(9)
$$G = \frac{F}{C \cdot R \cdot T}$$

となる. この(9)式を用いて、Fig.2の結果についてフィッ ティングを行うことにより、Ka,Kb,Ns を求めた結果を Table 3 に示す. Table 3 に示すように表面積当たりの表面 水酸基密度はロームに比べ砂の方が大きい結果となった が、比表面積を比べるとロームの方が約15倍大きいため、

solls								
Soils	Loam	Sand						
log <i>Ka</i> (l/mol)	-7.96	-9.35						
log <i>Kb</i> (l/mol)	3.97	4.46						
$Ns(mol/m^2)$	3.54x10 ⁻⁵	1.51x10 ⁻⁴						

 Table 3 Parameters used for surface complexation model on soils

本実験条件である固液比と比表面積を考慮すると収着試 験容器内における収着サイトとしての表面水酸基量は、ロ ームの方が約3.5倍大きくなる.また、陽イオン交換によ る収着サイト量も、Table 1に示すように陽イオン交換容量 からロームの方が砂に比べ約3.6倍大きい試料である.

0.33

0.59

3. 結果と考察

 $C(C/m^2)$

3.1 Pb

Pbの分配係数の pH 依存性を Fig.3 に示す.Fig.3(a)に示 すローム - 模擬雨水系での Pb の分配係数は酸性領域で約 20m³/kg であったが,中性では pH とともに減少してアルカ リ側で約 1~2m³/kg の一定値を示す結果となった.一方, Fig.3(b)に示す砂 - 湧水系での Pb の分配係数は,酸性領域 で約 1m³/kg のほぼ一定値を示すが,中性~アルカリ性領 域で pH とともに増加して 10~40m³/kg となった.これら の結果は,酸性領域ではローム-模擬雨水系の方が砂 - 湧 水系よりも Pb の分配係数が大きいが,アルカリ性領域で は砂 - 湧水系での分配係数がローム - 模擬雨水系での値 よりも大きくなり,土と溶液の組み合わせにより Pb の分 配係数の pH 依存性が大きく変動することを示している.

このような Pb の収着に対して,陽イオンの収着反応で ある陽イオン交換反応および表面錯体形成反応を適用し て検討を行った.陽イオン交換反応としては,土試料に含 まれるハロイサイトやスメクタイト等の層間に存在する 交換性陽イオンと溶液中の陽イオンの交換反応,表面錯形 成反応は,鉱物の結晶構造の端面に生じる表面水酸基との 共有結合性の強い結合反応[21]を想定した.具体的には, Table 4 に示す Pb の錯形成の熱力学データを基にして,Pb の土への収着反応として Tables 5,6 に示す Pb²⁺の陽イオン 交換反応および Pb²⁺および Pb(OH)⁺の表面錯形成反応を考 慮した.

実際の陽イオン交換反応としては、Table 5 に挙げた Na⁺ との交換よりも2価イオンである Ca²⁺等のイオンとの陽イ オン交換反応が優勢であると推定されるが、本研究の条件 では pH 調整のために Na⁺イオンが他の陽イオンよりも過 剰に入っているため、ここでは仮想的に溶液中に多く存在 する Na⁺イオンが目的元素と陽イオン交換反応を行うもの

Table 4 Thermodynamic data of elements

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Reaction					logK
$\begin{array}{rcrcrcrcrc} Pb^{2+} & + H_2O & = & Pb(OH)^+ & + & H^+ & -7.7 \\ Pb^{2+} + 2H_2O & = & Pb(OH)_2 & + & 2H^+ & -17.1 \\ Pb^{2+} + CO_3^{2-} & = & PbCO_3 & 7.0 \\ Pb^{2+} + SO_4^{2-} & = & PbSO_4 & 2.75 \\ Radium & & & & & & & & & & & & & & & & & & &$	Lead					
$\begin{array}{rcrcrcrcrc} Pb^{2+} + 2H_2O & = & Pb(OH)_2 & + & 2H^+ & -17.1 \\ Pb^{2+} + & CO_3^{2-} & = & PbCO_3 & & 7.0 \\ Pb^{2+} + & SO_4^{2-} & = & PbSO_4 & & 2.75 \\ \mbox{Radium} & & & & & & & & & & & & & & & & & & &$	$Pb^{2+} + H_2O$	=	$Pb(OH)^+$	+	H^+	-7.7
$\begin{array}{rcrcrcrc} Pb^{2+} & CO_3^{2-} & = & PbCO_3 & & 7.0 \\ Pb^{2+} & SO_4^{2-} & = & PbSO_4 & & 2.75 \\ Radium & & & & & & & & & & & & & & & & & & &$	$Pb^{2+} + 2H_2O$	=	$Pb(OH)_2$	+	$2H^+$	-17.1
$\begin{array}{rcl} Pb^{2+} & SO_4^{2-} & = & PbSO_4 & & 2.75 \\ Ratium & & & & \\ Ra^{2+} & H_2O & = & Ra(OH)^+ & + & H^+ & -13.5 \\ Ra^{2+} & SO_4^{2-} & = & RaSO_3 & & 2.5 \\ Ra^{2+} & SO_4^{2-} & = & RaSO_4 & & 2.75 \\ Thorium & & & & \\ Th^{4+} & H_2O & = & Th(OH)^{3+} & + & H^+ & -3.2 \\ Th^{4+} & 2H_2O & = & Th(OH)_2^{2+} & + & 2H^+ & -7.0 \\ Th^{4+} & 3H_2O & = & Th(OH)_4 & + & 4H^+ & -15.9 \\ Th^{4+} & H_2O & = & Th(OH)_4 & + & 4H^+ & -15.9 \\ Th^{4+} & SO_4^{2-} & = & ThSO_4^{2+} & & 5.5 \\ Actinium & & & \\ Ac^{3+} & H_2O & = & Ac(OH)^{2+} & + & H^+ & -6.4 \\ Ac^{3+} & 2H_2O & = & Ac(OH)_2^+ & + & 2H^+ & -14.1 \\ Ac^{3+} & 3H_2O & = & Ac(OH)_2^+ & + & 2H^+ & -14.1 \\ Ac^{3+} & 3H_2O & = & AcCO_3^+ & & 7.8 \\ Ac^{3+} & CO_3^{2-} & = & AcCO_3^+ & & 7.8 \\ Ac^{3+} & SO_4^{2-} & = & AcSO_4^+ & & 3.85 \\ Ac^{3+} & SO_4^{2-} & = & AcSO_4^+ & & 3.85 \\ Ac^{3+} & 2SO_4^{2-} & = & AcSO_4^+ & & 3.85 \\ Ac^{3+} & 2SO_4^{2-} & = & Ac(SO_4)_2^- & & 5.40 \\ Protactinium & & & \\ Pa^{4+} & H_2O & = & Pa(OH)^{3+} & + & H^+ & -0.50 \\ Pa^{4+} & 3H_2O & = & Pa(OH)^{3+} & + & 3H^+ & -1.50 \\ Pa^{4+} & 0.25O_2(g) & & & PaO(OH)_2^+ & + & 2H^+ & 22.18 \\ Pa^{4+} & 0.25O_2(g) & & & PaO(OH)_2^+ & + & 2H^+ & 22.68 \\ Pa^{4+} & 0.25O_2(g) & & & PaO(OH)_2^+ & + & 3H^+ & 22.68 \\ Pa^{4+} & 0.25O_2(g) & & & PaO_2(OH) & + & 4H^+ & 18.18 \\ Uranium & & & \\ UO_2^{2+} & H_2O & = & UO_2(OH)^- & + & 4H^+ & 18.18 \\ Uranium & & & \\ UO_2^{2+} & H_2O & = & UO_2(OH)^- & + & 2H^+ & -12.21 \\ UO_2^{2+} & 2H_2O & = & UO_2(OH)^- & + & 4H^+ & 18.18 \\ Uac_2^{2+} & 3H_2O & = & UO_2(OH)_2^{2-} & 4H^+ & -21.0 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OH)_2^{2-} & 4H^+ & -21.0 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OH)_2^{2-} & 4H^+ & -21.0 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 \\ UO_2^{2+} & 2O_3^2 & = & UO_2(OO_3)_2^{2-} & 16.94 $	$Pb_{1}^{2+} + CO_{3}^{2-}$	=	PbCO ₃			7.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Pb^{2+} + SO_4^{2-}$	=	$PbSO_4$			2.75
$\begin{array}{rcrcrcrcrc} Ra^{2+} & H_2O & = & Ra(OH)^+ & + & H^+ & -13.5 \\ Ra^{2+} & CO_3^{2-} & = & RaCO_3 & & 2.5 \\ Ra^{2+} & SO_4^{2-} & = & RaSO_4 & & 2.75 \\ \hline Thorium & & & & & & & & & & \\ Th^{4+} & H_2O & = & Th(OH)_3^{++} & + & H^+ & -3.2 \\ Th^{4+} & H_2O & = & Th(OH)_2^{2+} & + & 2H^+ & -7.0 \\ Th^{4+} & H_2O & = & Th(OH)_3^+ & + & 3H^+ & -11.7 \\ Th^{4+} & + & CO_3^{2-} & = & ThCO_3^{2+} & & & & & & \\ Th^{4+} & CO_3^{2-} & = & ThCO_3^{2+} & & & & & & \\ Th^{4+} & SO_4^{2-} & = & ThSO_4^{2+} & & & & & & \\ Ac^{3+} & + & H_2O & = & Ac(OH)_2^+ & + & H^+ & -6.4 \\ Ac^{3+} & + & H_2O & = & Ac(OH)_2^+ & + & 2H^+ & -14.1 \\ Ac^{3+} & + & H_2O & = & Ac(OH)_3 & + & 3H^+ & -25.7 \\ Ac^{3+} & CO_3^{2-} & = & AcCO_3^+ & & & & & \\ Ac^{3+} & SO_4^{2-} & = & AcCO_3(OH) & + & H^+ & -0.4 \\ Ac^{3+} & SO_4^{2-} & = & AcSO_4^+ & & & & & \\ Ac^{3+} & SO_4^{2-} & = & AcSO_4^+ & & & & & \\ Ac^{3+} & SO_4^{2-} & = & AcSO_4^+ & & & & & \\ Ac^{3+} & + & H_2O & = & Pa(OH)_3^{3+} & + & H^+ & 0.4 \\ Pa^{4+} & + & H_2O & = & Pa(OH)_3^{-2+} & + & 2H^+ & -15.0 \\ Pa^{4+} & + & H_2O & = & Pa(OH)_3^+ & + & 3H^+ & -1.50 \\ Pa^{4+} & + & O.2SO_2(g) & = & PaO^{2+} & + & 3H^+ & 22.68 \\ Pa^{4+} & + & O.2SO_2(g) & = & PaO_2(OH) & + & 4H^+ & 18.18 \\ Uranium & & & & & & \\ UO_2^{2+} & H_2O & = & UO_2(OH)_2^- & + & 2H^+ & -21.0 \\ UO_2^{2+} & H_2O & = & UO_2(OH)_3^- & + & 3H^+ & -21.0 \\ UO_2^{2+} & H_2O & = & UO_2(OH)_3^- & + & 3H^+ & -21.0 \\ UO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} & & & \\ HO_2^{2+} & SO_4^{2-} & = & UO_2(OA)_3^{-2} &$	Radium					
$\begin{array}{rcl} \operatorname{Ra}^{2^{+}} & \operatorname{CO}_{3}^{2^{-}} & = & \operatorname{Ra}\operatorname{CO}_{3} & & 2.5 \\ \operatorname{Ra}^{2^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ra}\operatorname{SO}_{4} & & 2.75 \\ \hline \operatorname{Thorium} & & & & \\ \operatorname{Th}^{4^{+}} & \operatorname{H}_{2}\mathrm{O} & = & \operatorname{Th}(\operatorname{OH})_{2}^{2^{+}} & + & 2\operatorname{H}^{+} & -7.0 \\ \operatorname{Th}^{4^{+}} & \operatorname{H}_{2}\mathrm{O} & = & \operatorname{Th}(\operatorname{OH})_{3}^{+} & + & 3\operatorname{H}^{+} & -11.7 \\ \operatorname{Th}^{4^{+}} & \operatorname{H}_{2}\mathrm{O} & = & \operatorname{Th}(\operatorname{OH})_{4}^{+} & + & 4\operatorname{H}^{+} & -15.9 \\ \operatorname{Th}^{4^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Th}\operatorname{SO}_{4}^{2^{+}} & & 5.5 \\ \operatorname{Actinium} & & & \\ \operatorname{Ac}^{3^{+}} & \operatorname{H}_{2}\mathrm{O} & = & \operatorname{Ac}(\operatorname{OH})_{2}^{+} & + & \operatorname{H}^{+} & -6.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{H}_{2}\mathrm{O} & = & \operatorname{Ac}(\operatorname{OH})_{2}^{+} & + & 2\operatorname{H}^{+} & -14.1 \\ \operatorname{Ac}^{3^{+}} & \operatorname{H}_{2}\mathrm{O} & = & \operatorname{Ac}(\operatorname{OH})_{3} & + & \operatorname{3H}^{+} & -25.7 \\ \operatorname{Ac}^{3^{+}} & \operatorname{ACO}_{3}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}^{+} & & 7.8 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}^{+} & & 3.85 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}^{+} & & 3.85 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH}) & + & \operatorname{H}^{+} & -0.4 \\ \operatorname{Ac}^{3^{+}} & \operatorname{SO}_{4}^{2^{-}} & = & \operatorname{Ac}\operatorname{CO}_{3}(\operatorname{OH})_{2}^{-} & + & 2\operatorname{H}^{+} & -0.2 \\ \operatorname{Pa}^{4^{+}} & + \operatorname{H}_{2}\operatorname{O} & = & \operatorname{Pa}(\operatorname{OH})_{3}^{3^{+}} & + & 2\operatorname{H}^{-} & -0.2 \\ \operatorname{Pa}^{4^{+}} & + & \operatorname{H}_{2}\operatorname{O} & = & \operatorname{Pa}(\operatorname{OH})_{3}^{+} & + & 3\operatorname{H}^{+} & -1.5 \operatorname{O} \\ \operatorname{Pa}^{4^{+}} & + & 0.25\operatorname{O}_{2}(\operatorname{G}) & = & $	$Ra^{2+} + H_2O$	=	$Ra(OH)^+$	+	H^+	-13.5
$\begin{array}{rcrcrcrc} {\rm Ra}^{2^{2}} + {\rm SO}_{4}^{2^{2}} & = {\rm Ra}{\rm SO}_{4} & 2.75 \\ \hline {\rm Thorium} & \\ {\rm Th}^{4+} + {\rm H}_{2}{\rm O} & = {\rm Th}({\rm OH})^{3+} & + {\rm H}^{+} & -3.2 \\ {\rm Th}^{4+} + {\rm H}_{2}{\rm O} & = {\rm Th}({\rm OH})^{2^{+}} & + 2{\rm H}^{+} & -7.0 \\ {\rm Th}^{4+} + {\rm H}_{2}{\rm O} & = {\rm Th}({\rm OH})^{3} & + 3{\rm H}^{+} & -11.7 \\ {\rm Th}^{4+} + {\rm H}_{2}{\rm O} & = {\rm Th}({\rm OH})^{3} & + 3{\rm H}^{+} & -11.7 \\ {\rm Th}^{4+} + {\rm H}_{2}{\rm O} & = {\rm Th}({\rm OH})^{3} & + 3{\rm H}^{+} & -15.9 \\ {\rm Th}^{4+} + {\rm CO}_{3}^{2^{-}} & = {\rm Th}{\rm SO}_{4}^{2^{+}} & 5.5 \\ {\rm Actinium} & & & & & & & & & & & & & & & & & & &$	$Ra^{2+} + CO_3^{2-}$	=	RaCO ₃			2.5
Thorium Th ⁴⁺ + H ₂ O = Th(OH) ³⁺ + H ⁺ -3.2 Th ⁴⁺ + 2H ₂ O = Th(OH) ₂ ²⁺ + 2H ⁺ -7.0 Th ⁴⁺ + 3H ₂ O = Th(OH) ₃ + 3H ⁺ -11.7 Th ⁴⁺ + 4H ₂ O = Th(OH) ₄ + 4H ⁺ -15.9 Th ⁴⁺ + CO ₃ ²⁻ = ThCO ₃ ²⁺ 11.03 Th ⁴⁺ + SO ₄ ²⁻ = ThSO ₄ ²⁺ 5.5 Actinium Ac ³⁺ + H ₂ O = Ac(OH) ²⁺ + H ⁺ -6.4 Ac ³⁺ + 2H ₂ O = Ac(OH) ₃ + 3H ⁺ -25.7 Ac ³⁺ + CO ₃ ²⁻ = AcCO ₃ + 7.8 Ac ³⁺ + CO ₃ ²⁻ = AcCO ₃ + 7.8 Ac ³⁺ + CO ₃ ²⁻ = AcCO ₃ (OH) + H ⁺ -0.4 Ac ³⁺ + SO ₄ ²⁻ = AcCO ₃ (OH) + H ⁺ -0.4 Ac ³⁺ + SO ₄ ²⁻ = AcSO ₄ + 3.85 Ac ³⁺ + 2SO ₄ ²⁻ = AcCO ₄) ₂ - 5.40 Protactinium Pa ⁴⁺ + H ₂ O = Pa(OH) ³⁺ + H ⁺ 0.84 Pa ⁴⁺ + 2H ₂ O = Pa(OH) ₂ ²⁺ + 2H ⁺ -1.50 Pa ⁴⁺ + 0.25O ₂ (g) = Pa(OH) ₃ + 3H ⁺ -1.50 Pa ⁴⁺ + 0.25O ₂ (g) = PaO(OH) ₂ + 2H ⁺ -1.50 Pa ⁴⁺ + 0.25O ₂ (g) = PaO(2+ + 3H ⁺ 22.18 Pa ⁴⁺ + 0.25O ₂ (g) = PaO(2+ + 3H ⁺ 22.68 Pa ⁴⁺ + 0.25O ₂ (g) = PaO(2+ + 3H ⁺ 22.68 Pa ⁴⁺ + 0.25O ₂ (g) = PaO ₂ (OH) + 4H ⁺ 18.18 Uranium UO ₂ ²⁺ + H ₂ O = UO ₂ (OH) ₂ + 2H ⁺ -12.21 UO ₂ ²⁺ + 3H ₂ O = UO ₂ (OH) ₃ + 3H ⁺ -21.0 UO ₂ ²⁺ + CO ₃ ²⁻ = UO ₂ (CO ₃) ₂ ²⁻ 16.94 UO ₂ ²⁺ + SO ₄ ²⁻ = UO ₂ (CO ₃) ₂ ²⁻ 16.94 UO ₂ ²⁺ + SO ₄ ²⁻ = UO ₂ (CO ₃) ₂ ²⁻ 16.94	$Ra^{2+} + SO_4^{2-}$	=	$RaSO_4$			2.75
$\begin{array}{rcrcrcrcrc} {\rm Th}^{4+} + {\rm H}_2{\rm O} & = {\rm Th}({\rm OH})^{3+} & + {\rm H}^+ & -3.2 \\ {\rm Th}^{4+} + {\rm 2H}_2{\rm O} & = {\rm Th}({\rm OH})^{2+} & + 2{\rm H}^+ & -7.0 \\ {\rm Th}^{4+} + {\rm 3H}_2{\rm O} & = {\rm Th}({\rm OH})^{3+} & + 3{\rm H}^+ & -11.7 \\ {\rm Th}^{4+} + {\rm 4H}_2{\rm O} & = {\rm Th}({\rm OH})^{4} & + 4{\rm H}^+ & -15.9 \\ {\rm Th}^{4+} + {\rm CO}_3^{2-} & = {\rm Th}{\rm SO}_4^{2+} & 5.5 \\ {\rm Actinium} & & & & & & & & & & & & & & & & & & &$	Thorium					
$\begin{array}{rcrcrcrcrc} {\rm Th}^{4+} + 2{\rm H}_2{\rm O} & = & {\rm Th}({\rm OH})_2^{2+} & + & 2{\rm H}^+ & -7.0 \\ {\rm Th}^{4+} + 3{\rm H}_2{\rm O} & = & {\rm Th}({\rm OH})_3^+ & + & 3{\rm H}^+ & -11.7 \\ {\rm Th}^{4+} + {\rm CO}_3^{2-} & = & {\rm Th}{\rm CO}_3^{2+} & & 11.03 \\ {\rm Th}^{4+} + & {\rm SO}_4^{2-} & = & {\rm Th}{\rm SO}_4^{2+} & & 5.5 \\ {\rm Actinium} & & & & & & & & & & \\ {\rm Ac}^{3+} + & {\rm H}_2{\rm O} & = & {\rm Ac}({\rm OH})_2^+ & + & {\rm H}^+ & -6.4 \\ {\rm Ac}^{3+} + 2{\rm H}_2{\rm O} & = & {\rm Ac}({\rm OH})_2^+ & + & 2{\rm H}^+ & -14.1 \\ {\rm Ac}^{3+} + 3{\rm H}_2{\rm O} & = & {\rm Ac}({\rm OH})_3 & + & 3{\rm H}^+ & -25.7 \\ {\rm Ac}^{3+} + & {\rm CO}_3^{2-} & = & {\rm Ac}{\rm CO}_3^+ & & 7.8 \\ {\rm Ac}^{3+} + & {\rm CO}_3^{2-} & = & {\rm Ac}{\rm CO}_3^+ & & 7.8 \\ {\rm Ac}^{3+} + & {\rm SO}_4^{2-} & = & {\rm Ac}{\rm CO}_3^+ & & 7.8 \\ {\rm Ac}^{3+} + & {\rm SO}_4^{2-} & = & {\rm Ac}{\rm CO}_3({\rm OH}) & + & {\rm H}^+ & -0.4 \\ {\rm Ac}^{3+} + & {\rm SO}_4^{2-} & = & {\rm Ac}{\rm CO}_3^+ & & 7.8 \\ {\rm Ac}^{3+} + & {\rm 2O}_3^2^- & = & {\rm Ac}{\rm CO}_3({\rm OH}) & + & {\rm H}^+ & -0.4 \\ {\rm Protactinium} & & & & & & & & & & & & & & & & & & &$	$Th_{1}^{4+} + H_2O$	=	$Th(OH)^{3+}$	+	H^{+}	-3.2
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$Th_{+}^{4+} + 2H_2O$	=	Th(OH)_2^{2+}	+	$2H^+$	-7.0
$\begin{array}{rcrcrcrcrcrc} Th^{4+} + 4H_2O & = Th(OH)_4 & + 4H^+ & -15.9 \\ Th^{4+} + CO_3^{2-} & = ThCO_3^{2+} & 11.03 \\ Th^{4+} + SO_4^{2-} & = ThSO_4^{2+} & 5.5 \\ Actinium & & & & & & & & & & & & & & & & & & &$	$Th_{1}^{4+} + 3H_2O$	=	$Th(OH)_3^+$	+	$3H^+$	-11.7
$\begin{array}{rcl} Th^{4+} & CO_3^{2-} & = & ThCO_3^{2+} & 11.03 \\ Th^{4+} & SO_4^{2-} & = & ThSO_4^{2+} & 5.5 \\ Actinium & & & & \\ Ac^{3+} + H_2O & = & Ac(OH)_2^+ & + & H^+ & -6.4 \\ Ac^{3+} + 2H_2O & = & Ac(OH)_2^+ & + & 2H^+ & -14.1 \\ Ac^{3+} + 3H_2O & = & Ac(OH)_3 & + & 3H^+ & -25.7 \\ Ac^{3+} + & CO_3^{2-} & = & AcCO_3^+ & & 7.8 \\ Ac^{3+} + & CO_3^{2-} & = & AcCO_3(OH) & + & H^+ & -0.4 \\ Ac^{3+} + & SO_4^{2-} & = & AcSO_4^+ & & 3.85 \\ Ac^{3+} + & 2SO_4^{2-} & = & Ac(SO_4)_2^- & 5.40 \\ Protactinium & & & \\ Pa^{4+} + H_2O & = & Pa(OH)_2^{2+} & + & 2H^+ & -0.02 \\ Pa^{4+} + 3H_2O & = & Pa(OH)_2^{2+} & + & 2H^+ & -0.02 \\ Pa^{4+} + 3H_2O & = & Pa(OH)_3^+ & + & 3H^+ & -1.50 \\ Pa^{4+} + 0.25O_2(g) & = & PaO(OH)_2^+ & + & 2H^+ & 22.18 \\ Pa^{4+} + 0.25O_2(g) & = & PaO^{2+} & + & 3H^+ & 22.68 \\ Pa^{4+} + 0.25O_2(g) & = & PaO_2(OH) & + & 4H^+ & 18.18 \\ Uranium \\ UO_2^{2+} + H_2O & = & UO_2(OH)^+ & + & H^+ & -5.2 \\ UO_2^{2+} + 2H_2O & = & UO_2(OH)^- & + & 3H^+ & -21.0 \\ UO_2^{2+} + 2O_3^{2-} & = & UO_2(CO_3)_2^{2-} & 16.94 \\ UO_2^{2+} + SO_4^{2-} & = & UO_2(CO_3)_4^{4-} & 21.56 \\ UO_2^{2+} + SO_4^{2-} & = & UO_2(SO_4)_2^{2-} & 4 14 \\ \end{array}$	$Th^{4+} + 4H_2O$	=	$Th(OH)_4$	+	$4H^+$	-15.9
$\begin{array}{rcl} Th^{4+} & SO_4^{2-} & = & ThSO_4^{2+} & 5.5 \\ Actinium & & & & \\ Ac^{3+} + H_2O & = & Ac(OH)_2^{+} & + & H^+ & -6.4 \\ Ac^{3+} + 2H_2O & = & Ac(OH)_2^+ & + & 2H^+ & -14.1 \\ Ac^{3+} + 3H_2O & = & Ac(OH)_3 & + & 3H^+ & -25.7 \\ Ac^{3+} + & CO_3^{2-} & = & AcCO_3^+ & & 7.8 \\ Ac^{3+} + & SO_4^{2-} & = & AcCO_3(OH) & + & H^+ & -0.4 \\ Ac^{3+} + & SO_4^{2-} & = & AcSO_4^+ & & 3.85 \\ Ac^{3+} + & 2SO_4^{2-} & = & Ac(SO_4)_2^- & 5.40 \\ Protactinium & & \\ Pa^{4+} + H_2O & = & Pa(OH)_2^{2+} & + & 2H^+ & -0.02 \\ Pa^{4+} + 3H_2O & = & Pa(OH)_2^{2+} & + & 2H^+ & -0.02 \\ Pa^{4+} + 3H_2O & = & Pa(OH)_3^+ & + & 3H^+ & -1.50 \\ Pa^{4+} + 0.25O_2(g) & = & PaO(OH)_2^+ & + & 2H^+ & 22.18 \\ Pa^{4+} + 0.25O_2(g) & = & PaO^{2+} & + & 3H^+ & 22.68 \\ Pa^{4+} + 0.25O_2(g) & = & PaO_2(OH) & + & 4H^+ & 18.18 \\ Uranium & & \\ UO_2^{2+} + H_2O & = & UO_2(OH)^+ & + & H^+ & -5.2 \\ UO_2^{2+} + 3H_2O & = & UO_2(OH)^- & + & 3H^+ & -21.0 \\ UO_2^{2+} + CO_3^{2-} & = & UO_2(CO_3)_2^{2-} & 16.94 \\ UO_2^{2+} + SO_4^{2-} & = & UO_2(CO_3)_4^{4-} & 21.56 \\ UO_2^{2+} + SO_4^{2-} & = & UO_2(SO_4)_2^{2-} & 4 14 \\ \end{array}$	$Th^{4+} + CO_3^{2-}$	=	ThCO ₃ ²⁺			11.03
Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Actinium Pa ⁴⁺ + B ₂ O Protactinium Pa ⁴⁺ + B ₂ O Pa ⁴⁺ + B ₂ O Actinium Pa ⁴⁺ + B ₂ O Pa ⁴⁺ + B ₂ O Actinium Pa ⁴⁺ + B ₂ O Actinium Actinium Actinium Actinium Pa ⁴⁺ + B ₂ O Actinium Pa ⁴⁺ + B ₂ O Actinium Pa ⁴⁺ + B ₂ O Pa ⁴⁺ + B ₂ O Pa ⁴⁺ + B ₂ O Pa ⁴⁺ + B ₂ O Actinium A	$Th^{4+} + SO_4^{2-}$	=	ThSO4 ²⁺			5.5
$\begin{array}{rcrcrcrc} Ac^{3^{+}} + & H_{2}O & = & Ac(OH)^{2^{+}} & + & H^{+} & -6.4 \\ Ac^{3^{+}} + & 2H_{2}O & = & Ac(OH)_{2}^{+} & + & 2H^{+} & -14.1 \\ Ac^{3^{+}} + & 3H_{2}O & = & Ac(OH)_{3} & + & 3H^{+} & -25.7 \\ Ac^{3^{+}} + & CO_{3}^{2^{-}} & = & AcCO_{3}^{+} & & & 7.8 \\ Ac^{3^{+}} + & CO_{3}^{2^{-}} & = & AcCO_{3}(OH) & + & H^{+} & -0.4 \\ Ac^{3^{+}} + & SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & 5.40 \\ Protactinium \\ Pa^{4^{+}} + & H_{2}O & = & Pa(OH)^{3^{+}} & + & H^{+} & 0.84 \\ Pa^{4^{+}} + & 2H_{2}O & = & Pa(OH)^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + & 3H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -1.50 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium \\ UO_{2}^{2^{+}} + & H_{2}O & = & UO_{2}(OH)^{-} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + & 2H_{2}O & = & UO_{2}(OH)_{3} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + & 2CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})^{2^{-}} & 16.94 \\ UO_{2}^{2^{+}} + & 3CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})^{4^{-}} & 21.56 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}(SO_{4})^{2^{-}} & 4 14 \\ \end{array}$	Actinium					
$\begin{array}{rcrcrcrcrc} Ac^{3^{+}} + 2H_{2}O & = & Ac(OH)_{2}^{+} & + & 2H^{+} & -14.1 \\ Ac^{3^{+}} + 3H_{2}O & = & Ac(OH)_{3} & + & 3H^{+} & -25.7 \\ Ac^{3^{+}} + & CO_{3}^{2^{-}} & = & AcCO_{3}^{+} & & & 7.8 \\ Ac^{3^{+}} + & CO_{3}^{2^{-}} & = & AcCO_{3}(OH) & + & H^{+} & -0.4 \\ Ac^{3^{+}} + & SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & 5.40 \\ Protactinium \\ Pa^{4^{+}} + H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + 3H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + 3H_{2}O & = & Pa(OH)_{3}^{+} & + & 3H^{+} & -1.50 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium \\ UO_{2}^{2^{+}} + H_{2}O & = & UO_{2}(OH)^{+} & + & H^{+} & -5.2 \\ UO_{2}^{2^{+}} + 2H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -12.21 \\ UO_{2}^{2^{+}} + 3H_{2}O & = & UO_{2}(OH)_{3} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})_{2}^{2^{-}} & 16.94 \\ UO_{2}^{2^{+}} + SO_{4}^{2^{-}} & = & UO_{2}(CO_{3})_{4}^{4^{-}} & 21.56 \\ UO_{2}^{2^{+}} + SO_{4}^{2^{-}} & = & UO_{2}(SO_{4})^{2^{-}} & 4 14 \\ \end{array}$	$Ac^{3+} + H_2O$	=	$Ac(OH)^{2+}$	+	H^+	-6.4
$\begin{array}{rcrcrcrcrc} Ac^{3^{+}} + 3H_{2}O & = & Ac(OH)_{3} & + & 3H^{+} & -25.7 \\ Ac^{3^{+}} + & CO_{3}^{2^{-}} & = & AcCO_{3}^{+} & & 7.8 \\ Ac^{3^{+}} + & CO_{3}^{2^{-}} & = & AcCO_{3}(OH) & + & H^{+} & -0.4 \\ Ac^{3^{+}} + & SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & 5.40 \\ Protactinium & & & \\ Pa^{4^{+}} + & H_{2}O & = & Pa(OH)_{2}^{3^{+}} & + & H^{+} & 0.84 \\ Pa^{4^{+}} + & 2H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + & 3H_{2}O & = & Pa(OH)_{3}^{+} & + & 3H^{+} & -1.50 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium \\ UO_{2}^{2^{+}} + & H_{2}O & = & UO_{2}(OH)^{+} & + & H^{+} & -5.2 \\ UO_{2}^{2^{+}} + & 2H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -12.21 \\ UO_{2}^{2^{+}} + & 3H_{2}O & = & UO_{2}(OH)_{3} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + & CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})_{4}^{2^{-}} & 21.56 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}(CO_{3})_{4}^{4^{-}} & 21.56 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & SO_{4}^{2$	$Ac^{3+} + 2H_2O$	=	$Ac(OH)_2^+$	+	$2H^+$	-14.1
$\begin{array}{rcl} Ac^{3^{+}} + CO_{3}^{2^{-}} & = & AcCO_{3}^{+} & & 7.8 \\ Ac^{3^{+}} + CO_{3}^{2^{-}} & = & AcCO_{3}(OH) & + & H^{+} & -0.4 \\ Ac^{3^{+}} + SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & & 5.40 \\ Protactinium & & & \\ Pa^{4^{+}} + H_{2}O & = & Pa(OH)^{3^{+}} & + & H^{+} & 0.84 \\ Pa^{4^{+}} + 2H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + 3H_{2}O & = & Pa(OH)_{3}^{+} & + & 3H^{+} & -1.50 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium \\ UO_{2}^{2^{+}} + H_{2}O & = & UO_{2}(OH)^{-} & + & 4H^{+} & 18.18 \\ Uranium \\ UO_{2}^{2^{+}} + 3H_{2}O & = & UO_{2}(OH)^{-} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + 2H_{2}O & = & UO_{2}(OH)_{3}^{-} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + 2CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})_{2}^{2^{-}} & 16.94 \\ UO_{2}^{2^{+}} + SO_{4}^{2^{-}} & = & UO_{2}(CO_{3})_{4}^{4^{-}} & 21.56 \\ UO_{2}^{2^{+}} + SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} & UO_{2}^{2^{-}} & UO_{$	$Ac^{3+} + 3H_2O$	=	$Ac(OH)_3$	+	$3H^+$	-25.7
$\begin{array}{rcl} Ac^{3^{+}} + CO_{3}^{2^{-}} & = & AcCO_{3}(OH) & + & H^{+} & -0.4 \\ Ac^{3^{+}} + & SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & & 5.40 \\ \\ Protactinium & & & & \\ Pa^{4^{+}} + H_{2}O & = & Pa(OH)^{3^{+}} & + & H^{+} & 0.84 \\ Pa^{4^{+}} + 2H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + 3H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium & & & \\ UO_{2}^{2^{+}} + H_{2}O & = & UO_{2}(OH)^{-} & + & 4H^{+} & 18.18 \\ Uranium & & & \\ UO_{2}^{2^{+}} + 3H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -12.21 \\ UO_{2}^{2^{+}} + 3H_{2}O & = & UO_{2}(OH)_{3} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + 2CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})_{2}^{2^{-}} & 16.94 \\ UO_{2}^{2^{+}} + SO_{4}^{2^{-}} & = & UO_{2}(CO_{3})_{4}^{4^{-}} & 21.56 \\ UO_{2}^{2^{+}} + SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2^{+}} + 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^$	$Ac^{3+} + CO_3^{2-}$	=	$AcCO_3^+$			7.8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$Ac^{3+} + CO_3^{2-}$	_			\mathbf{U}^+	0.4
$\begin{array}{rcl} Ac^{2^{+}} + & SO_{4}^{2^{-}} & = & AcSO_{4}^{+} & 3.85 \\ Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & 5.40 \\ \hline Protactinium & & & \\ Pa^{4^{+}} + & H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + & 2H_{2}O & = & Pa(OH)_{2}^{2^{+}} & + & 2H^{+} & -0.02 \\ Pa^{4^{+}} + & 3H_{2}O & = & Pa(OH)_{3}^{+} & + & 3H^{+} & -1.50 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO^{2^{+}} & + & 3H^{+} & 22.68 \\ Pa^{4^{+}} + & 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium & & \\ UO_{2}^{2^{+}} + & H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -5.2 \\ UO_{2}^{2^{+}} + & 2H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -12.21 \\ UO_{2}^{2^{+}} + & 3H_{2}O & = & UO_{2}(OH)_{3} & + & 3H^{+} & -21.0 \\ UO_{2}^{2^{+}} + & 2CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})_{2}^{2^{-}} & 16.94 \\ UO_{2}^{2^{+}} + & 3CO_{3}^{2^{-}} & = & UO_{2}(CO_{3})_{4}^{4^{-}} & 21.56 \\ UO_{2}^{2^{+}} + & SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2^{+}} + & 2SO_{4}^{2^{-}} & = & UO_{2}SO_{4} & 4.14 \\ \end{array}$	$+ H_2O$	_	ACCO ₃ (OII)	Ŧ	11	-0.4
$\begin{array}{rcl} Ac^{3^{+}} + & 2SO_{4}^{2^{-}} & = & Ac(SO_{4})_{2}^{-} & 5.40 \\ \hline Protactinium \\ Pa^{4+} + H_{2}O & = & Pa(OH)_{2}^{3+} & + & H^{+} & 0.84 \\ Pa^{4+} + 2H_{2}O & = & Pa(OH)_{2}^{2+} & + & 2H^{+} & -0.02 \\ Pa^{4+} + 3H_{2}O & = & Pa(OH)_{3}^{+} & + & 3H^{+} & -1.50 \\ Pa^{4+} + 0.25O_{2}(g) & = & PaO(OH)_{2}^{+} & + & 2H^{+} & 22.18 \\ Pa^{4+} + 0.25O_{2}(g) & = & PaO^{2+} & + & 3H^{+} & 22.68 \\ Pa^{4+} + 0.25O_{2}(g) & = & PaO^{2+} & + & 3H^{+} & 22.68 \\ Pa^{4+} + 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ Uranium \\ UO_{2}^{2+} + H_{2}O & = & UO_{2}(OH)^{+} & + & H^{+} & -5.2 \\ UO_{2}^{2+} + 2H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -12.21 \\ UO_{2}^{2+} + 3H_{2}O & = & UO_{2}(OH)_{3}^{-} & + & 3H^{+} & -21.0 \\ UO_{2}^{2+} + CO_{3}^{2-} & = & UO_{2}(CO_{3})_{2}^{2-} & 16.94 \\ UO_{2}^{2+} + 3CO_{3}^{2-} & = & UO_{2}(CO_{3})_{4}^{4-} & 21.56 \\ UO_{2}^{2+} + SO_{4}^{2-} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2+} + 2SO_{4}^{2-} & = & UO_{2}SO_{4} & 3.15 \\ UO_{2}^{2+} + 2SO_{4}^{2-} & = & UO_{2}SO_{4} & 3.15 \\ \end{array}$	$Ac_{2}^{3+} + SO_{4}^{2-}$	=	$AcSO_4^+$			3.85
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Ac^{3+} + 2SO_4^{2-}$	=	$Ac(SO_4)_2$			5.40
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Protactinium		2			
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$Pa_{4+}^{4+} + H_2O$	=	Pa(OH) ³⁺	+	H^+	0.84
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$Pa_{4+}^{4+} + 2H_2O$	=	$Pa(OH)_2^{2+}$	+	$2H^+$	-0.02
$\begin{array}{rcl} Pa^{4+} + 0.25O_2(g) & = & PaO(OH)_2^+ & + & 2H^+ & 22.18 \\ Pa^{4+} + 0.25O_2(g) & = & PaO^{2+} & + & 3H^+ & 22.68 \\ Pa^{4+} + 0.25O_2(g) & = & PaO_2(OH) & + & 4H^+ & 18.18 \\ Pa^{4+} + 0.25O_2(g) & = & PaO_2(OH) & + & 4H^+ & 18.18 \\ Uranium \\ UO_2^{2+} + & H_2O & = & UO_2(OH)^+ & + & H^+ & -5.2 \\ UO_2^{2+} + & 2H_2O & = & UO_2(OH)_2 & + & 2H^+ & -12.21 \\ UO_2^{2+} + & 3H_2O & = & UO_2(OH)_3^- & + & 3H^+ & -21.0 \\ UO_2^{2+} + & 2CO_3^{2-} & = & UO_2(CO_3)_2^{2-} & 16.94 \\ UO_2^{2+} + & 3CO_3^{2-} & = & UO_2(CO_3)_4^{4-} & 21.56 \\ UO_2^{2+} + & SO_4^{2-} & = & UO_2SO_4 & 3.15 \\ UO_2^{2+} + & 2SO_4^{2-} & = & UO_2SO_4 & 4.14 \\ \end{array}$	$Pa_{4+}^{4+} + 3H_2O$	=	$Pa(OH)_3^+$	+	$3H^+$	-1.50
$\begin{array}{rcl} +1.5H_{2}O & = & PaO^{(OH)_{2}} & + & 2H & 22H \\ Pa^{4+} + 0.25O_{2}(g) & = & PaO^{2+} & + & 3H^{+} & 22.68 \\ Pa^{4+} + 0.25O_{2}(g) & = & PaO_{2}(OH) & + & 4H^{+} & 18.18 \\ \\ Uranium & & & \\ UO_{2}^{2+} + & H_{2}O & = & UO_{2}(OH)^{+} & + & H^{+} & -5.2 \\ UO_{2}^{2+} + & 2H_{2}O & = & UO_{2}(OH)_{2} & + & 2H^{+} & -12.21 \\ UO_{2}^{2+} + & 3H_{2}O & = & UO_{2}(OH)_{3}^{-} & + & 3H^{+} & -21.0 \\ UO_{2}^{2+} + & 2CO_{3}^{2-} & = & UO_{2}(CO)_{3}^{2-} & & 16.94 \\ UO_{2}^{2+} + & 3CO_{3}^{2-} & = & UO_{2}(CO)_{3}^{4-} & & 21.56 \\ UO_{2}^{2+} + & SO_{4}^{2-} & = & UO_{2}SO_{4} & & 3.15 \\ UO_{2}^{2+} + & 2SO_{4}^{2-} & = & UO_{2}SO_{4} & & 3.15 \\ \end{array}$	$Pa^{4+} + 0.25O_2(g)$	=	PaO(OH) ₂ ⁺	+	$2H^+$	22.18
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+1.5H ₂ O		1 40(011)2	'	211	22.10
$\begin{array}{rcl} +1.5H_{2}O & = & HaO & + & 5H & = 22.00 \\ Pa^{4+} + 0.25O_2(g) & = & PaO_2(OH) & + & 4H^+ & = 18.18 \\ \\ Uranium & & & \\ UO_2^{2+} + & H_2O & = & UO_2(OH)^+ & + & H^+ & -5.2 \\ UO_2^{2+} + & 2H_2O & = & UO_2(OH)_2 & + & 2H^+ & -12.21 \\ UO_2^{2+} + & 3H_2O & = & UO_2(OH)_3^- & + & 3H^+ & -21.0 \\ UO_2^{2+} + & CO_3^{2-} & = & UO_2CO_3 & & 9.67 \\ UO_2^{2+} + & 2CO_3^{2-} & = & UO_2(CO_3)_2^{2-} & = 16.94 \\ UO_2^{2+} + & 3CO_3^{2-} & = & UO_2(CO_3)_4^{4-} & & 21.56 \\ UO_2^{2+} + & SO_4^{2-} & = & UO_2SO_4 & & 3.15 \\ UO_2^{2+} + & 2SO_4^{2-} & = & UO_2SO_4 & & 3.15 \\ \end{array}$	$Pa^{4+} + 0.25O_2(g)$	=	PaO^{2+}	+	$3H^+$	22.68
$\begin{array}{rcl} Pa^{4^{+}} + 0.25O_2(g) \\ + 2.5H_2O \end{array} &= PaO_2(OH) &+ 4H^+ & 18.18 \\ \\ Uranium \\ UO_2^{2^{+}} + H_2O &= UO_2(OH)^+ &+ H^+ & -5.2 \\ UO_2^{2^{+}} + 2H_2O &= UO_2(OH)_2 &+ 2H^+ & -12.21 \\ UO_2^{2^{+}} + 3H_2O &= UO_2(OH)_3^- &+ 3H^+ & -21.0 \\ UO_2^{2^{+}} + CO_3^{2^{-}} &= UO_2CO_3 & 9.67 \\ UO_2^{2^{+}} + 2CO_3^{2^{-}} &= UO_2(CO_3)_2^{2^{-}} & 16.94 \\ UO_2^{2^{+}} + 3CO_3^{2^{-}} &= UO_2(CO_3)_4^{4^{-}} & 21.56 \\ UO_2^{2^{+}} + SO_4^{2^{-}} &= UO_2SO_4 & 3.15 \\ UO_2^{2^{+}} + 2SO_4^{2^{-}} &= UO_2SO_4 & 414 \\ \end{array}$	+1.5H ₂ O		ruo		511	22.00
$\begin{array}{rcrcrcr} +2.5\mathrm{H}_{2}\mathrm{O} &=& \mathrm{Id} \mathrm{O}_{2}(\mathrm{OH})^{+} &+& \mathrm{H}^{+} & \mathrm{Id} Id $	$Pa^{4+} + 0.25O_2(g)$	=	PaO ₂ (OH)	+	$4H^+$	18 18
Uranium $UO_2^{2+} + H_2O = UO_2(OH)^+ + H^+ -5.2$ $UO_2^{2+} + 2H_2O = UO_2(OH)_2 + 2H^+ -12.21$ $UO_2^{2+} + 3H_2O = UO_2(OH)_3^- + 3H^+ -21.0$ $UO_2^{2+} + CO_3^{2-} = UO_2CO_3 -9.67$ $UO_2^{2+} + 2CO_3^{2-} = UO_2(CO_3)_2^{2-} -16.94$ $UO_2^{2+} + 3CO_3^{2-} = UO_2(CO_3)_4^{4-} -21.56$ $UO_2^{2+} + SO_4^{2-} = UO_2SO_4 -3.15$ $UO_2^{2+} + 2SO_4^{2-} = UO_2SO_4 -3.15$	$+2.5H_{2}O$		1402(011)			10.10
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Uranium					
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$UO_{2^{2+}} + H_{2}O$	=	$UO_2(OH)^+$	+	H^+	-5.2
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$UO_{2^{2+}} + 2H_{2}O$	=	$UO_2(OH)_2$	+	$2H^+$	-12.21
$UO_{2}^{2+} + CO_{3}^{2-} = UO_{2}CO_{3} \qquad 9.67$ $UO_{2}^{2+} + 2CO_{3}^{2-} = UO_{2}(CO_{3})_{2}^{2-} \qquad 16.94$ $UO_{2}^{2+} + 3CO_{3}^{2-} = UO_{2}(CO_{3})_{3}^{4-} \qquad 21.56$ $UO_{2}^{2+} + SO_{4}^{2-} = UO_{2}SO_{4} \qquad 3.15$ $UO_{2}^{2+} + 2SO_{4}^{2-} = UO_{2}(SO_{4})_{2}^{2-} \qquad 4.14$	$UO_2^{2+} + 3H_2O_2$	=	$UO_2(OH)_3$	+	$3H^+$	-21.0
$UO_{2}^{2+} + 2CO_{3}^{2-} = UO_{2}(CO_{3})_{2}^{2-} $ $I6.94$ $UO_{2}^{2+} + 3CO_{3}^{2-} = UO_{2}(CO_{3})_{3}^{4-} $ 21.56 $UO_{2}^{2+} + SO_{4}^{2-} = UO_{2}SO_{4} $ 3.15 $UO_{2}^{2+} + 2SO_{4}^{2-} = UO_{2}(SO_{4})_{2}^{2-} $ $4 \ 14$	$UO_2^{2+} + CO_3^{2-}$	=	UO_2CO_3			9.67
$UO_{2}^{2+} + 3CO_{3}^{2-} = UO_{2}(CO_{3})_{3}^{4-} 21.56$ $UO_{2}^{2+} + SO_{4}^{2-} = UO_{2}SO_{4} 3.15$ $UO_{2}^{2+} + 2SO_{4}^{2-} = UO_{2}(SO_{4})_{2}^{2-} 414$	$UO_2^{2+} + 2CO_3^{2-}$	=	$UO_2(CO_3)_2^{2-}$			16.94
$UO_2^{2+} + SO_4^{2-} = UO_2SO_4$ 3.15 $UO_2^{2+} + 2SO_4^{2-} = UO_2(SO_4)^{2-}$ 4.14	$UO_2^{2+} + 3CO_3^{2-}$	=	$UO_2(CO_3)_3^{4-}$			21.56
$UO_2^{2+} + 2SO_4^{2-} = UO_2(SO_4)_2^{2-}$ 4.14	$UO_2^{2+} + SO_4^{2-}$	=	UO_2SO_4			3.15
-50/100/17 $-50/100/17$ $-51/100/17$	$UO_2^{2+} + 2SO_4^{2-}$	=	$UO_2(SO_4)_2^2$			4.14

All data were taken from ref.[19].

Ac data were taken from Am data by chemical analogy.

と推定した.実際の計算では、Table 2 に挙げた溶液組成の うちの陽イオンについて、その当量をすべて Na⁺イオンに 置き換えて Na⁺イオンと目的元素の陽イオン交換反応を仮 定した.また、収着反応の計算に際しての陽イオン交換サ イト密度は、各土試料の陽イオン交換容量を用い、表面錯 体パラメーターとしては Table 3 に示す表面電荷特性値を 用いた.これらの条件に基づき、溶液中の化学形態および 収着反応の計算を地球化学計算コード CHESS[18]を用い て行った.ここでは、実験データへのフィッティングによ

Table 5 Cation exchange equilibrium constant

					logK	logK
Reaction					(Loam)	(Sand)
$2S-Na + Pb^{2+}$	=	(S-) ₂ Pb	+	$2Na^+$	3.2	1.4
2S-Na + Ra ²⁺	=	(S-) ₂ Ra	$^+$	$2Na^+$	-0.7	2.7
4S-Na + Th ⁴⁺	=	(S-) ₄ Th	$^+$	$4Na^+$	11.5	9.7
$3S-Na + Ac^{3+}$	=	(S-) ₃ Ac	$^+$	$3Na^+$	5.8	7.8
2S-Na + UO ₂ ²⁺	=	$(S-)_2UO_2$	+	$2Na^+$	-0.3	1.3

S-:Soil surface cation exchange site

り各陽イオン交換平衡定数および表面錯体平衡定数も求 め Tables5, 6 に示した. Table 6 に示した収着化学種は, Table 4 に示した溶液中での各化学種の収着反応を一旦想 定して分配係数との関係を求めて収着化学種として有意 に存在し得るものを抽出し,再度分配係数との関係を求め ることにより選定した.

Figure.3(a) にローム - 模擬雨水系での計算結果を示す. ローム - 模擬雨水系の酸性領域では、Pbの化学形態が Pb²⁺ であり競合する陽イオンが少ないため、Pbの陽イオン交換 反応に起因する大きな分配係数値がおおむね再現できる 結果となった.しかし、中性領域からアルカリ性領域での Pbの分配係数は、Pbの化学形がPb(OH)+およびPbCO3 に変 化して陽イオン交換が可能な溶存形態である Pb²⁺が減少 することにより Pb の分配係数は低下するが、実測された 分配係数の低下は再現できない結果となった.これは、中 性領域にかけても陽イオン交換による Pb の分配係数への 寄与が大きいためである . そこで, pH 調整のために添加 した NaOH 濃度を考慮して、Na⁺濃度を 50mg/l として Pb の 分配係数の pH 依存性を計算すると, 中性 - アルカリ性領 域での Pb の分配係数の低下をおおむね再現できる結果が 得られた.したがって, Pbの収着反応としては酸性から中 性領域では陽イオン交換反応が支配的であり、 アルカリ性 領域では pH とともに表面錯体である S-OPb⁺の形成が生じ ることが推定された.また、この結果は、共存イオン濃度 が低い模擬雨水系では外部から入る陽イオンの濃度によ って酸性から中性領域での Pb の分配係数が大きく支配さ れることを示唆しており、処分場の性能評価での分配係数 の設定には注意を要する可能性があると推定される.

Fig.3(b)に砂 - 湧水系での計算結果を示す. この場合で も、酸性領域では Pb²⁺の陽イオン交換による収着が支配的 ではあるが、ローム - 模擬雨水系での分配係数に比べ、砂 - 湧水系での値が低い結果となったのは、砂試料が Table 1 に示すように陽イオン交換容量が小さいことと、湧水中に 共存イオンが多く含まれるために Pb²⁺の陽イオン交換に よる収着量が少なくなったためであると考えられる. -方、中性領域からアルカリ性領域では Pb²⁺の陽イオン交換 による収着が低下するとともに、表面錯体である S-OPb⁺ および S-OPb(OH)の形成による Pb の収着が主体となるこ とが推定された.

これらの結果は、本試験で用いた土の pH である中性領 域において Pb の分配係数は Pb²⁺の陽イオン交換および表 面錯体形成により支配されていることを示しており、前報 で示したように Pb の分配係数が土の陽イオン交換容量お よび比表面積と相関が見られた結果[1]を支持するもので ある.

3.2 Ra

Ra の分配係数の pH 依存性を Fig.4 に示す.Fig.4(a)に示 すローム - 模擬雨水系での Ra の分配係数は、酸性領域で 約 10m³/kg であったが、pH8 以上のアルカリ性領域で約 0.3m³/kg と1 桁以上低下する傾向を示した.一方、Fig.4(b) に示す砂 - 湧水系での Ra の分配係数は、約1~3m³/kg であ り変動幅はあるものの pH に対しておおむね一定値を示し

Table 6 Surface complexa	tion constant
--------------------------	---------------

Reaction			log <i>K</i> (Loam)	log <i>K</i> (Sand)
Lead				
$S-OH + Pb^{2+}$	= S-OPb ⁺	$+$ H^+	2.3	6.3
$S-OH + Pb^{2+} + H_2O$	= S-OPb(OH)	$+ 2H^{+}$	-	-3.2
Thorium				
$S-OH + Th^{4+} + 2H_2O$	= S-OTh(OH) ₂ ⁺	$+ 3H^{+}$	0.9	0.0
$S-OH + Th^{4+} + CO_3^{2-}$	= S-OThCO ₃ ⁺	+ H ⁺	12.8	12.3
Actinium				
$S-OH + Ac^{3+}$	= S-OAc ²⁺	+ H ⁺	1.8	-
$S-OH + Ac^{3+} + 2H_2O$	= S-OAc(OH) ₂	$+ 3H^{+}$	-	-7.7
$S-OH + Ac^{3+} + CO_3^{2-}$	= S-OAcCO ₃	+ H ⁺	2.4	4.0
Uranium	-			
$S-OH + UO_2^{2+}$	= S-OUO ₂ (OH) ⁺	$+$ H^+	8.0	6.4
$S-OH + UO_2^{2+} + H_2O$	= S-OUO ₂ (OH)	$+ 2H^{+}$	0.0	2.3
$S-OH + UO_2^{2+} + H^+ + 3CO_3^{2-}$	= S-OH ₂ UO ₂ (CO ₃) ₃ ³⁻	$+ 2H^{+}$	13.0	16.2

: Surface complexation constant was not determined because of low contribution to sorption of each element on soils.

S-OH: Surface hydroxyl group

Fig.3 Distribution coefficients of Pb

Observed —— Calculated (a)loam-artificial rain water system (b)sand-ground water system

た.

Ra の収着反応は、前報で示したように土壌の陽イオン 交換容量と Ra の分配係数に相関が認められることや、既 往の研究から Ra²⁺の陽イオン交換的な収着反応が主体的 であることおよび表面錯体形成による収着も想定される ことが示されている[1,13,14,22]. そこで、Pb と同様に Tables4,5 に挙げた熱力学データおよび陽イオン交換反応 を用いて収着の pH 依存性について解析を行った. ローム - 模擬雨水系では、Na⁺濃度を Table 2 の値および NaOH の 添加の影響として Na⁺濃度を変化させた場合について計算 を行った. Fig.4(a)に示す結果から、中性からアルカリ性 領域で Na⁺濃度が 80mg/l を越える場合に Ra の分配係数が 大きく低下し、おおむね実測値と一致することが示された. 一方, Fig.4(b)に示した砂 - 湧水系では、共存イオン濃度 が高いことから pH の変動による共存イオン濃度の変化を 受けずに、Ra²⁺の陽イオン交換反応による収着によりほぼ 一定の分配係数となった. 前報では、土の pH6~7 での

Raの分配係数値は土のCECとの相関が示されているが[1],

Fig.4 Distribution coefficients of Ra

ここでの計算結果においても Ra²⁺の陽イオン交換的な収 着が主体であることが示され、Raの分配係数が土の陽イオ ン交換サイト量に依存することを示唆する結果となった. これらの結果は、Pb での結果で示したように、通気層環 境と帯水層環境において地下水中の共存イオン濃度と土 の陽イオン交換容量の差によって分配係数およびその pH 依存性が異なることを示唆するものと思われる.

3.3 Ac

Ac の分配係数の pH 依存性を Fig.5 に示す. Fig5(a)に示 す Ac のローム - 模擬雨水系での分配係数は, 酸性領域で 約 0.2m³/kg から徐々に増加して中性領域で最大値約 10m³/kg となった. さらに, アルカリ性領域では pH とと もに約 1m³/kg に低下する傾向を示した. 一方, Fig5(b)に 示す砂 - 湧水系では, 酸性領域で約 0.2m³/kg から pH とと もに増加し, pH4~7 付近では約 5m³/kg でほぼ一定値を取 り, さらに pH の増加とともに, 分配係数が 10m³/kg 以上に 増加する傾向を示した. この結果から, Ac の場合, 酸性か ら中性領域では同様な pH 依存性を示すが, アルカリ性領 域で pH 依存性が異なる結果となった.

Fig.5 Distribution coefficients of Ac

Observed Calculated (a)loam-artificial rain water system (b)sand-ground water system

pH 依存性の解析において, Ac の中性領域における熱力 学データについてはあまり整備されていないため, 3 価の 陽イオンとしてその化学的挙動が類似しているアメリシ ウムの熱力学データを使用して分配係数の pH 依存性につ いて検討を行った(Tables4, 5, 6 参照).

Fig.5(a)に示すローム - 模擬雨水系においてAcの収着は, pH7 程度までは Ac³⁺の陽イオン交換であり,それ以上で S-OAcCO₃の表面錯体形成による収着が主体であることが 推定された.この結果は,Acの収着試験の後に,KCl+CaCl₂ 溶液による抽出により収着形態を調べた結果(Fig.6)ともお おむね一致する.すなわち,Fig.6に示すようにpH4.9では 収着した Ac のほとんどが KCl+CaCl₂ 溶液で抽出され,収 着形態としては陽イオン交換的な形態であったが,pH8.2 では可逆的な収着形態の割合が減少し,不可逆的な収着形 態が約 80%を占める結果であった.Lieser ら[17]は,低pH 領域でのAcの分配係数が溶液中のNa 濃度に比例すること から低 pH 領域では陽イオン交換的な収着であるとしてお り,本実験の結果と一致している.

砂 - 湧水系では、酸性領域で Ac³⁺の陽イオン交換が主な 収着形態であり、中性 ~ アルカリ性領域では S-OAcCO₃ お よび S-OAc(OH)₂ による収着種が支配的であると推定され

Fig.6 Percent distribution of Ac by desorption with KCl-CaCl₂

:Reversible sorption :Irreversible sorption Loam-RW: loam-artificial rain water system Sand-GW: sand-ground water system

た. Fig.6 に示す砂 - 湧水系での KCl+CaCl₂溶液による抽 出結果を見ると、低 pH では Ac の大部分が KCl+CaCl₂溶液 で抽出される陽イオン交換的な収着形態であるが、高 pH では約 80% が不可逆な収着形態を占める結果であった. これも Fig.5(b)に示す Ac の収着種の pH に対する分布とお おむねその傾向が一致するものである.また、Fig.5 に示す ように、ローム - 模擬雨水系とアルカリ側で分配係数の pH 依存性が異なる結果が認められたのは、両者の溶液系 で想定される化学種とそれに伴う土表面での収着種の違 いによるものであることが推定される.

なお、Ac でも酸性領域では陽イオン交換的な収着で可能 性が示されたが、Ra、Pb で見られたように共存イオン濃度 が低く、陽イオン交換容量が大きいローム - 模擬雨水系の 酸性領域での高い分配係数は認められなかった. これは Ac の試験では、Ac 原液の酸濃度が高いことから、試験溶液 の pH 調整に伴う Na⁺が約 230mg/l となり、Ra、Pb における ような共存イオン濃度が湧水系よりも極端に低くならな い試験条件であったことによるものと推定される. また、 ここではあくまでもアメリシウムの熱力学データを用い た解析であり、ここで得られた結果は暫定的なものである と考えられる.

3.4 Th

Th の分配係数の pH 依存性を Fig.7 に示す. Fig7(a)に示 すようにローム - 模擬雨水系の酸性領域では分配係数が 10²m³/kg 以上の測定限界値以上となり,酸性領域で非常に 高い分配係数値となる結果となった. さらに中性領域か らアルカリ性領域にかけて 5m³/kg から 0.1m³/kg 以下へ pH とともに低下する結果が得られた. Fig7(b)に示す砂- 湧

Fig.7 Distribution coefficients of Th

Observed Calculated (a)loam-artificial rain water system (b)sand-ground water system

水系での分配係数は,酸性領域~中性領域にかけて約 2~ 3m³/kg でほぼ一定であったが,pH7.5 以上で pH とともに 0.1m³/kgまで低下する傾向を示した.したがって,Th の場 合,ローム-模擬雨水系および砂-湧水系のどちらでも, 酸性領域で分配係数が高く中性からアルカリ性領域で pH とともに分配係数が低下する傾向は同様であった.

これらの pH 依存性に対して,他の元素と同様に Th⁴⁺の 陽イオン交換反応および表面錯体形成反応による収着反応についての解析を行った(Tables 4, 5, 6 参照). ローム -模擬雨水系での解析結果を Fig.7(a)に示す.酸性領域から アルカリ性領域まで,Th の分配係数の pH 依存性はおおむ ね再現できる結果が得られた.このときの Th の主な収着 反応としては, pH5 以下で Th⁴⁺の陽イオン交換, pH6 以上で S-OThCO₃, pH8 以上で S-OTh(OH)₂ の表面錯体による収 着反応が支配的であると推定された.一方, Fig.7(b)に示す 砂- 湧水系でも,土表面での収着種はローム - 模擬雨水の ものと同じであった.

Th の収着の pH 依存性は, Allard ら[2], Osthols[11]および Cromières ら[12]によって示されているように,酸性側で低 いが pH とともに増加することが知られている.本研究で 得られた結果は Fig.7 に示すように酸性から中性付近でも 収着が大きくなっており、これらの既往の pH 依存性と大 きく異なる傾向を示した.この違いとしては、上記の解析 結果から、酸性~pH5 付近まで Th⁴⁺の陽イオン交換を考慮 することが必要となることであると推定される. すなわ ち, Allard ら, Osthols および Cromières らが用いた SiO₂, Al₂O₃, Hematite 等のような鉱物試料への収着では陽イオン 交換的な収着への寄与が少ないために酸性領域での収着 が低くpHとともにThの表面錯体形成により収着が増加す る傾向となるが、本研究で用いた土試料では酸性から中性 領域での陽イオン交換的な収着が大きく寄与するために 分配係数が比較的 pH が低い領域でも大きな値を示す結果 となったと推察される. Syed[23]は Th の土壌堆積物への 分配係数が Ca+Mg イオン濃度の増加により低下すること から Th の陽イオン交換的な収着を示唆していること, さ らに前報[1]で示したように土の陽イオン交換容量と Th の 分配係数が弱いながらもある程度の相関が認められてい ることは、本研究での Th の陽イオン交換的な収着を加え た解析結果を支持するものと思われる.

3.5 Pa

Paの分配係数の pH 依存性を Fig.8 に示す.Pa の分配係 数の pH 依存性は、ローム - 模擬雨水系および砂 - 湧水系 で異なる結果が得られた.すなわち、Fig8(a)に示すローム - 模擬雨水系では、pH6~7 にかけて最大値で約 10m³/kg の 値を示し、pH の増加と共に分配係数が低下して約 0.02m³/kg となり、さらに pH10 以上で再び増加する傾向を 示した.しかし、Fig8(b)に示す砂 - 湧水系では酸性領域か ら中性領域にかけて約 0.3m³/kg でほぼ一定値であるが、約 pH8.5~10 で分配係数が最大値約 10m³/kg を示してまた減 少する結果となった.Allard らの Pa の 0.01M NaClO₄ 溶液 中での SiO₂への pH 依存性の測定結果では pH3~pH6 まで

Fig.8 Distribution coefficients of Pa

Fig.9 Expected chemical species' distribution of Pa in ground water

はおおむね一定値となり, pH6以上でpHとともに増加して pH9~10 で最大, それ以上で低下する傾向が報告され[2], 本研究での Fig.8(b)に示した砂 - 湧水系での結果とおおむ ね一致している.このことは,比較的共存イオン濃度の高 い条件での Pa の収着は Fig.3(b)のような pH 依存性を示す とともに,共存イオン濃度の違いによりその pH 依存性が 異なる可能性を示しているかもしれない.

Pa の場合には熱力学データがあまり整備されておらず、 模擬雨水および湧水の液性の違いを反映した溶液中での 化学形態並びに収着種を求めるには至っていない.暫定 的に Table4 に示す既存の熱力学データを用いて溶液中の Pa を計算すると Fig.9 に示す結果が得られた.その結果、 Pa は主に PaO(OH)₃(aq)や PaO(OH)₂⁺の化学形態を取ると推 定されるが、Pa はその化学濃度やpH等の条件により、重合 体形成による複雑な化学挙動を取ることが知られており [24]、より複雑な化学形態であることが推定される.また、 収着後の Pa に対して Ac と同様な逐次抽出を行った結果を Fig.10 に示す.pH6~8 において、ローム - 模擬雨水系お よび砂 - 湧水系のどちらでも、Pa のほとんどは不可逆な収 着形態となっており、Pa の収着が強い結合による収着挙動 であることを示している.

前報においては、土物性値の1つである陽イオン交換容 量や比表面積と Pa の分配係数に相関が認められている結 果が示されている[1]. このことは、収着サイト密度の増 加により Pa の分配係数が増加することを意味しており、Pa の収着反応も収着種を特定することにより、その収着反応 をモデル的に表すことが可能であると考えられる.

3.6 U

Uの分配係数の pH 依存性を Fig.11 に示す. ローム - 模 擬雨水系での分配係数はすべての pH 領域で砂 - 湧水系で の値よりも大きい値を示した. 最大値はローム - 模擬雨

Fig.10 Percent distribution of Pa by desorption with KCl-CaCl₂

:Reversible sorption :Irreversible sorption Loam-RW: loam-artificial rain water system Sand-GW: sand-ground water system

水系では約 10m³/kg であり,砂 - 湧水系で約 0.8m³/kg であった.しかし pH 依存性はどちらの系でも同様な傾向を示した.すなわち,酸性領域から pH とともに分配係数が増加して pH6~7 で最大値を示し、さらに pH の増加とともに分配係数が低下する傾向を示した.このような pH 依存性はAllard ら[2], Hsi and Langmuir[5]および Nelo ら[7]が報告している傾向とほぼ同様の結果であり、この pH 依存性はUの化学形態の変化と土の持つ表面電位の変化に対応していることは既に Hsi and Langmuir[5]による検討で示されている.そこで本研究では、これらの既往の研究を基にUO₂²⁺等の表面錯体形成を収着反応および UO₂²⁺の陽イオン交換反応(Tables 4,5,6 参照)によるローム - 模擬雨水系および砂 - 湧水系での U の分配係数の pH 依存性を求めた.

それぞれの系での計算結果をFig.11に示す. ローム - 模 擬雨水系では、 $pH3 \sim 4$ では UO_2^{2+} の陽イオン交換反応と S-OUO₂⁺の表面錯体による収着が支配的であると推定され た. また、pH6以上では、S-OUO₂(OH)の表面錯体形成によ る収着が大きく寄与する結果と考えられる.一方、砂 - 湧 水系では酸性領域でも陽イオン交換の寄与はほとんどな く、S-OUO₂⁺およびS-OUO₂(OH)による表面錯体形成が寄与 する結果となった. また、pH9以上でS-OH₂UO₂(CO₃)₃³⁻に よる収着が主な収着形態と推定された.

Uの場合、分配係数の絶対値の違いはあるが、そのpH依存性は2種類の土 - 溶液系においておおむね似たような結果が得られているのもかかわらず、土表面でのUの収着種の分布には違いが認められた.これは、溶液中のイオン濃度および炭酸イオン濃度の違い、さらにTable 3に示した表面水酸基での水素イオンの解離定数の違いを反映したものであると推定される.

Fig.11 Distribution coefficients of U

(b)sand-ground water system

3.7 陽イオン交換平衡定数および表面錯体平衡定数

以上の Pb, Ra, Th, Ac, U の収着挙動の解析において,本 試験で用いた 2 種類の土試料に対する陽イオン交換平衡 定数および表面錯体平衡定数が得られた.ここでは,これ らの値についての妥当性について検討を行った.

陽イオン交換反応による収着は、土表面に形成される電気2重層の拡散層に保持されている陽イオンとの交換により生じる.この場合、イオンの電荷数が大きく、かつイオン半径が大きいほど水和イオン半径が小さくなり収着量が増加することとなる[25].そこで、ここで得られたTable 5の各元素の陽イオン交換平衡定数について、各元素のイオン半径あたりの電荷 z/r(z:形式電荷,r:イオン半径[26])との関係をFig.12 にプロットした.その結果、z/rの増加とともに陽イオン交換平衡定数が増加しており、同じ土試料への陽イオン交換反応に対して得られた陽イオン交換平衡定数の相対的な大きさは既存の知見と整合しているものと考えられる.但し、Uについては他の元素との傾向より小さい値となった.Uの場合は陽イオン交換反応となる UO2²⁺がジオキソニウムイオンであるため、例え

ば、他の元素よりも構造的阻外による層間中の交換性陽イ オンとの陽イオン交換が阻外されたものと推定される. また、湧水中には Table 2 に示すように溶存有機物も存在 しており、この有機物との錯形成等の影響の可能性も推定 される.

また,表面錯体平衡定数については,各錯形成反応に対応する溶液中の錯形成反応の値との相関が知られている [7,27].そこで,本試験の解析で得られた Table 6 の値と Table 4 の熱力学データとの相関についてプロットを行った結果を Fig.13 に示す.本試験の解析で得られた5元素のすべての表面錯体平衡定数について水溶液中の錯形成定数と直線的な相関が認められ,本試験での解析で得られた表面錯体平衡定数値は,ここで用いた土試料 - 溶液試料において系統的な値であるものと考えられる.また,このような解析については,比較的単純な鉱物試料を用いた系での収着挙動の推定において用いられているが,実土試料と地下水試料を用いた実際の系に近い条件でもその収着形態の推定に際して有効であると推定される.

Fig.12 Relationship between cation exchange equilibrium constant and *z/r* of each element (*z*: formal charge, *r*: ionic radii)

Fig.13 Relationship between surface complex constant and aqueous complex constant

4 結言

本研究では、U 系列核種である Pb, Ra, Ac, Th, Pa, U の通 気層環境および帯水層環境での分配係数の pH 依存性につ いて測定するとともに、その pH 依存性の結果についてモ デル解析を行い以下の結果を得た.

- ・通気層環境の代表例としてロームと模擬雨水系での分配
 係数は、共存イオン濃度が低く、ロームの陽イオン交換
 能が高いことから、共存イオンの影響を大きく受ける可
 能性を示した。
- ・帯水層環境の代表例として砂 湧水系での分配係数は、 全体的にローム - 模擬雨水系よりも小さく、その pH 依 存性も元素によりローム - 模擬雨水系と異なる結果が得 られた.これは、砂 - 湧水系では共存イオン濃度が高く、 砂試料の陽イオン交換能が低いことによると推定された. また、模擬雨水と湧水の違いでは、主に炭酸イオン濃度 の違いによる炭酸錯体形成の影響も認められた.
- ・Pb, Ra, Ac, Th, U に対して陽イオン交換反応と表面錯体形 成モデルによる解析を行い、おおむねその収着挙動を表 すことが可能であった.得られた陽イオン交換平衡定数 および表面錯体平衡定数はイオン半径と形式電荷との関 係および水溶液中での錯形成定数との相関がおおむね認 められた.
- ・これらの結果から、従来主に行われてきた単一鉱物への 収着挙動のみならず、複雑な浅地中環境中での収着試験 の解析にも、このような収着モデルの適用の可能性を示 した。

謝辞

本研究の推進にあたって貴重な御助言を頂いた東京大 学田中知教授に深く感謝の意を表します.また,本研究 は電源開発特別会計事業による通商産業省(現,経済産業 省)からの受託研究「ウラン廃棄物処理処分システム開発 調査」の一部として行ったものである.

参考文献

- 石井友章ら:浅地中環境下における U 系列核種の分 配係数測定 (I). 原子力バックエンド研究 本号.
- [2] Allard, B. et al.: Sorption of actinides in well-defined oxidation states on geologic media. *Scientific Basis for Nuclear Waste Management V (Mat. Res. Soc. Symp. Proc. Vol.11)*(Lutze W. ed.), Berlin, Germany, June 7-10, 1982, pp. 775-783 (1982).
- [3] Meyer, R.E. et al.: Sorption of nuclides on hydrous oxides sorption isotherm on natural materials. Geochemical Behavior of Disposed Radioactive Waste(ACS Symposium Series 246)(Barney G.S., Navratil, J.D., Schulz, W.W. eds.), Washington, U.S.A., March 20-25, 1983, pp.79-94 (1984).

- [4] Stumm, W., Hohl, H., Dalang, F.: Interaction of metal ions with hydrous oxides surface. *Croatica Chemica Acta* 48(4) 491-504 (1976).
- [5] Hsi, C.-K. D., Langmuir, D.: Sorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. *Geochim. Cosmochim. Acta* 49, 1931-1941 (1985).
- [6] Ho, C.H., Doern D.C.: The sorption of uranyl species on a hematite sol. *Canadian J. Chem.* 63, 1100-1104 (1985).
- [7] Nelo, M.D. et al.: Sorption/Desorption processes of uranium in clayey samples of the Bangombé natural reactor zone, Gabon. *Radiochim. Acta* 87, 135-149 (1999).
- [8] Waite, T.D., Davis, J.A., Fenton, B.R. Payne T.E.: Approaches to modeling uranium(VI) sorption on natural mineral assemblages. *Radiochim. Acta* 88, 687-693 (2000).
- [9] Buchter, B. et al.: Correlation of Freundlich *Kd* and *n* retention parameters with soils and elements. *Soil Science*. 148, 370-379 (1989).
- [10] Tripathi, V.S., Siegel, M.D., Kooner, Z.S.: Measurement of metal sorption in oxides-clay mixtures: "competitive-additivity" among mixture components. *Scientific Basis for Nuclear Waste Management XVI (Mat. Res. Soc. Symp. Proc. Vol.294*)(Interrante, C.G. and Pabaln, R.T. ed.), Boston, USA, Nobember 30-December 4, 1992, pp. 791-797 (1993).
- [11] Osthols, E.: Thorium sorption on amorphous silica. *Geochim. Cosmoschim. Acta* **59**, 1235-1249 (1995).
- [12] Cromières, L. et al.: Sorption of thorium onto hematite colloids. *Radiochim. Acta* 82, 249-255 (1998).
- [13] Meier, H. et al.: Influence of liquid/solid ratios in radionuclide migration studies. *J. Radioanal. Nucl. Chem.* 109, No.1, 139-151 (1987).
- [14] Baraniak, L., Thieme, M., Bernhard, G., Nitsche, H.: Sorption behavior of radium on sandy and clayey sediments of the upper Saxon Elbe river valley, J. *Radioanal. Nucl. Chem.*,241, No.3, 511-517 (1999).
- [15] Berry, J.A. et al.: Solubility and sorption of protactinium in the near-field and far-field environments of a radioactive waste repository. *Analyst.* **114**, 339-347 (1989).
- [16] Nakayama, S., Moriyama H., Arimoto, H., Higashi, K.: Distribution coefficients of americium, neptunium and protactinium for selected rocks. Mem. Fac. Eng., Kyoto Univ. 48, No.3, 275-283 (1986).
- [17] Lieser, K.H. et al.: Actinides in the environment. J. Radioanal. Nucl. Chem. 147, No.1, 117-131 (1991).
- [18] van der Lee, J. and Windt L. De: CHESS Tutorial and cookbook. updated for version 2.5 users manual Nr. LHM/RD/00/13, École des Mines de Paris, Fontainebleau, France (2000).
- [19] 山口徹治:地下水中における元素の溶解度及び化学 形を推定するための熱力学データの検討第2編:Np, Pu. JAERI-Data/Code 2000-031 (2000).

- [20] 田村紘基,満田匡彦,永山政一:二酸化マンガンのイ オン交換特性. 電気化学 54 No.3 250-256 (1986).
- [21] 白水 晴雄,: 粘土鉱物学 粘土科学の基礎 , 朝倉 書店, 東京, pp.37 (1991).
- [22] 坂本義昭 他: 浅地中環境下における U 系列核種の 分配係数測定(). 日本原子力学会 2000 年秋の大会, 青森,9月15~17日 K50 (2000).
- [23] Syed, H.S.: Extrapolation studies on sorption of thorium and uranium at different solution compositions on soil sediments. *J.Radioanal. Nucl. Chem.* 237, No.1-2, 125-128 (1998).
- [24] Katz, J.J., Seaborg, G.T., Moss, L.R.: The chemistry of actinides elements, 2nd ed., Vol.1, Champman and Hall, New York, pp.142-153 (1986).
- [25] Bolt, G.H. and Bruggenwert, M.G.M.著 岩田進午 他訳: 土壌の化学, 学会出版センター, 東京, pp.71 (1980).
- [26] 日本化学会編:化学便覧基礎編改訂4版,丸善,東京, pp. -725- 726 (1993).
- [27] Fujita, T. et al.: Modeling of neptunium(V) sorption behavior onto iron-containing materials. *Scientific Basis* for Nuclear Waste Management XVIII (Mat. Res. Soc. Symp. Proc. Vol. 353)(Murakami, T and Ewing, R.C. ed.), Part 2, Kyoto, Japan, October 23-27, 1994, pp.965-972 (1995).