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地球物理観測による地下モニタリングと AI利用 
 

澤山和貴＊1 
 

 

放射性廃棄物の地層処分において，広大かつ不可視な地下空間の特性やその長期的挙動を把握するために，地球物理
学的探査によるモニタリングは不可欠な技術である．近年，この分野では人工知能（AI）の活用が急速に進展しており，

数値シミュレーションを高速化する代理モデルだけでなく，観測データから地下構造や物性を推定する逆解析において
も革新が見られる．本稿では，まず地球物理モニタリングの最新動向として，地震波や電磁気を用いた 4 次元的な地下
環境変化の可視化事例を整理する．そのうえで，AI 利用の最新研究成果として，(1) デジタル岩石画像への深層学習適

用と説明可能 AIによる岩石物理モデルの解釈性向上 ，(2) 物理法則（保存則等）を学習に組み込み，スパースなデータ
からでも高精度な逆解析を実現する物理深層学習，(3) Transformerアーキテクチャを応用し，少数のセンサー情報から物
理場全体を再構成する新たなフレームワークについて概説する．これらの技術は，観測データが制限される深地層環境

において，モニタリングの高度化やデジタルツインの構築に寄与するものである． 
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Geophysical monitoring is an essential technology for characterizing deep geological environments and understanding their long-

term behavior in the geological disposal of radioactive waste. Recently, the application of Artificial Intelligence (AI) has rapidly 

progressed in this field. Beyond surrogate modeling for accelerating numerical simulations, significant innovations are emerging in 

inverse analysis to estimate subsurface structures and properties from observational data. This paper first reviews recent trends in 

geophysical monitoring, focusing on 4D visualization of subsurface changes using seismic and electromagnetic exploration methods. 

Subsequently, it reviews the latest research on AI applications, specifically: (1) the improvement of interpretability in rock physics 

models using Explainable AI applied to digital rock images; (2) Physics-Informed Neural Network, which integrates physical laws 

(e.g., conservation laws) into the learning process to enable robust inverse analysis even with sparse data; and (3) a novel framework 

using Transformer architectures to reconstruct entire physical fields from limited sensor data. These technologies contribute to the 

advancement of monitoring systems and the development of digital twins in deep geological environments where observational data 

is limited.  
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1 はじめに 

 

放射性廃棄物の地層処分候補地の事前評価ならび閉鎖後

の長期安定性能を評価するためには，地下の流体流動挙動

の評価が急務である．しかし原位置での浸透率測定は容易

ではなく，その時間変化の推定は数値モデリングに頼らざ

るを得ない[1]．これまでの研究では，原位置の応力条件に

おける岩石の透水性測定や統計的に構築した亀裂ネットワ

ークによる数値シミュレーション（DFN）が主流であった

が，瑞浪の試験場では複雑な亀裂パターンが確認され，実

際には天然環境の透水性を実験室から予測することは非常

に困難であることが明らかとなった．そこで近年，地球物

理学的探査手法（弾性波探査や電気比抵抗探査）を活用し

た，地下の流体流動の間接的評価が注目されている．地震

波速度や電気比抵抗は，流動を支配する岩石内部の幾何構

造に感度がある．これらの物性値の特性を利用することで，

地層処分の候補地となる場所における地下構造の事前評価

や，処分場閉鎖後の構造変化モニタリングさえも地上から

遠隔に行うことができると期待される． 

本稿では，地球物理学的探査手法の概要と動向をまず整

理した上で，企画セッションのタイトルにある「AI 利用」

について最新の研究成果をレビューしていきたい．放射性

廃棄物の地層処分分野における AI 利用というと，数値シ

ミュレーションを高速化するための代理モデル（Surrogate 

Modeling）が主流であると思われる[2]．他方，地球物理

観測分野でも近年 AI 利用が進んでいる．この分野では，

Surrogate Modeling のように入力モデルをもとに結果を出

力する順解析のみならず，観測データから説明モデル（目

に見えない地下構造）を推定する逆解析においても AI 利

用が進んでいる．本稿では，主に後者に焦点を当ててレビ

ューを行う． 

 

2 地球物理モニタリング 

 

地球物理学的探査手法を用いたイメージングは，高レベ

ル放射性廃棄物の処分場選定において，目に見えない地下

空間を定量化するために有用である．例えば Wynn and 

Roseboom（1987）は，処分場事前選定において多数のボー

リング調査を行うことは，地層のバリア機能を損なうリス

クがあること，そのため地球物理探査が大規模な地下岩盤

を非破壊で検査できる唯一の手段であるとしている[3]．

Juhlin and Palm（1999）は，スウェーデン南東部のエスポ地

下研究施設の近くで反射法地震探査を実施し，破砕帯の鮮

明なイメージングに成功した[4]．これは地表地質踏査で確

認されている破砕帯の位置とよく一致し，地下水の主要な

経路となる破砕帯を明確に可視化できることが明らかとな

った．また Rucker and Fink（2007）は，米国の Hanford Site

において，核兵器製造拠点で生じた土壌汚染の広がりを 3

次元電気探査によって可視化した[5]． 

さらに近年では，これらの物理探査手法をタイムラプス

的に取得し，地震や地熱開発中の時空間変化のモニタリン

グ（4D geophysics）が行われている例もある．Taira et al. 

（2018）は，米国 California州の Salton Sea 地熱フィールド

において，表面波微動の自己相関を取ることで，地下岩盤
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の表面波速度（S 波速度に相当）の変化を解析した[6]．そ

の結果，地震に伴う地下亀裂の開口で速度が減少している

こと，また地熱開発に伴う地下亀裂の閉鎖で速度が増加し

ていることを明らかにした．この表面波微動の解析は，地

震や特定の震源を必要としないため，低コストのモニタリ

ング手法として注目されている．他方，Tsuji et al.（2021）

は，微弱な人工震源装置を利用して最大で約 80km 離れた

地点で P波速度の変化を計測した[7]．その結果，地熱発電

所の操業や降雨による地下の間隙水圧の変化に伴うわずか

な速度変化を捉えることに成功した．この震源装置は，可

搬できるように小型化されたものまで開発されている[8]．

山谷ほか（2018）は，奥会津地熱地域において，河川水を

地下に注入する涵養試験中に 2次元電磁探査を実施し，季

節変化に伴う地下の水飽和度変化を観測した[9]．Johnson et 

al.（2021）は，米国 South Dakota州 Sanford 地下研究施設で

の能動的地熱開発（Enhanced Geothermal System; EGS）にお

いて，3 次元電気探査を実施し，高圧水注入に伴う岩盤内

の亀裂開閉をリアルタイムに可視化した[10]．これらの事

例は，地下の状態変化を物理探査手法によって数秒〜年単

位のリアルタイムで追跡できることを意味している． 

同様の探査が幌延試験場でも実施されており，Ozaki 

（2023）は掘削に伴うP波速度の低下を明らかにした[11]．

このように現在の物理探査技術では，掘削影響領域

（Excavation Damaged Zone）の亀裂の進展までも追跡でき

ている．これらの観測物性値と流体流動挙動の関係を精緻

に明らかにすることができれば，これまで定量的な解釈が

不十分であった複雑な地下の現在ないしは将来に渡る流体

流動の時空間分布に関する解釈精度の向上が期待できる．

実際の地下環境で得られる観測物性値から目に見えない地

下の流体流動挙動の時空間変化を予測するには，岩石物理

モデルと呼ばれる構成則を構築する必要がある．これまで

先行研究は，亀裂同士の相互作用を考慮していない解析解

が用いられており[12]，複雑な亀裂パターンを有する地下

では直接適用できないという課題があった．これに対して，

著者は，近年のデジタル化技術や機械学習モデルを活用す

ることで，地球物理学的探査データを地下の透水性に変換

する岩石物理モデルを構築してきた[13,14]．このようなモ

デルが確立できれば，候補地の物理探査データを解釈する

際により定量的な透水性評価が行えるだけでなく，閉鎖後

の長期間モニタリングにおいても地上の観測物性値から地

下空間の変化を推定することが可能となる．本稿では，ま

ずはじめに岩石物理モデル高度化のための AI 利用として

著者の研究を紹介し，その後物理探査データ解析の高度化

のための AI利用について最新研究をレビューする．  

 

3 AI研究例の紹介 

 

3.1 説明可能 AI 

近年，深層学習の飛躍的な発展により， AI は画像認識

や自然言語処理をはじめとする多岐にわたる分野で実用的

な性能を示すようになった [15]．しかし，一般に深層学習

モデルは，数百万から数十億のパラメータを持つ複雑な非

線形関数であり，その内部動作は人間にとって理解困難で

ある．入力に対してなぜその出力が得られたのかという因

果関係や論理的プロセスが不透明であるため，これらは一

般にブラックボックスと呼ばれる [16]．このようなブラッ

クボックス性は，地層処分分野における規制に対する安全

性の論証や，地域住民との合意形成において大きな課題と

なり得る． 

このような背景から，説明可能 AI の研究が近年注目を

集めている．説明可能 AI とは，AI の動作や結果を人間が

理解し，信頼し，管理できるようにするための一連の技術

や手法を指す[16]．例えば畳み込みニューラルネットワー

ク（CNN）を用いた画像認識分野では，モデルが画像のど

こを見て判断したかを可視化する手法（Class Activation 

Mapping; CAM）が提案されている [17]．これは，最終畳み

込み層の特徴マップと Global Average Pooling（GAP）層の

重みを利用して，特定のクラス判断に寄与した画像領域を

ヒートマップとして表示する手法である．CAMは GAP 層

を持つ CNN に限定されるという制約があったが，これを

拡張した Grad-CAM  は、勾配情報を用いることであらゆ

る CNNアーキテクチャへの適用を可能にした[18]． 

これらの研究の多くは分類タスクに焦点を当てているが，

CAM の概念を回帰問題へと拡張した Regression Activation 

Mapping (RAM) [19] も近年提案されている．RAMは，出

力される連続値の変動に寄与する特徴量を特定し，予測値

の大小が画像のどの領域に由来するかを可視化する．

Sawayama et al.（2024）は，これをデジタル岩石画像に応用

することで，地震波速度（P 波速度，S波速度）や電気比抵

抗の値がどのような岩石内部構造に感度があるかを可視化

した[20]．この研究で使用した入力データはベレア砂岩の

デジタル岩石画像である．同一のデジタル岩石画像を元に

有限要素法[21,22]で P波速度（Vp），S波速度（Vs），Vp/Vs，

電気比抵抗の 4物性を解析し，その結果を教師データとし

て使用した．なお，それぞれの物性ごとの RAM を得るた

め，同一の CNN アーキテクチャでそれぞれ 4 パターンの

学習を行った．なおこのアーキテクチャは，さまざまな試

行錯誤をもとにベストケースを選択した．P 波速度（Vp），

S波速度（Vs），Vp/Vs，電気比抵抗それぞれの学習曲線を

Fig.1に示す．全体的に，先行研究[23]に比べても十分結果

が収束していると判断できる．この結果をもとに RAM に

よるヒートマップを可視化した（Fig.2）．なおヒートマップ

は最大値に基づいて正規化され，支配的な微細構造を強調

するため，重ね合わせ画像では最大値の 10%を超える領域

が可視化されている（最大値の 10%未満の領域は透明）．得

られた結果から，P 波速度と S 波速度は，機械が大きな粒

子を注視し，微細な空隙や小さな粒子があまり重要な構造

ではないことが明らかとなった（Figs.2e and f）．粒子は水

で満たされた空隙よりも硬いことから，粒子間の連結（骨

格）が地震波速度を支配している可能性が推測される．こ

れは，先行研究で報告されている地震波速度の粒径依存性

と整合的である[24]．一方で， Vp/Vs の RAM は粒子では

なく空隙に焦点を当てている（Fig.2g）．Vp/Vs は地下の間

隙水圧分布推定に広く用いられており，この結果は Vp/Vs

が空隙特性を捉え得ることを裏付けている．また電気比抵

抗は粒子の縁部と周囲の空隙に焦点を当てており，地震波
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速度と異なる構造に感度を持つことが明らかとなった

（Fig.2h）．これらの領域は空隙の屈曲度と関連している可

能性があり，輸送特性の重要な決定因子であることが裏付

けられた[25]．さらに，この可視化された RAMは電流の流

れ方向に沿った細長い特徴を捉えており，本手法が輸送特

性の異方性を重要な特徴として認識できることを示してい

る．全体として，各特性を予測するための RAM は異なる

支配的特徴を示したことから，地震波速度と電気比抵抗は

内部微細構造に対する感度が異なる可能性が明らかとなり，

これは現場データの Joint inversion/interpretation や特性間の

相互関係を検討する際に考慮すべきであることが示唆され

た． 

 

3.2 物理深層学習 

地球科学/工学分野のように，深層学習が必要とするビッ

グデータを用意することが必ずしも容易でない場合もある． 

また従来のデータ駆動型モデルでは，物理的にあり得ない

予測を行う可能性もある [26]．これらの課題を解決するた

め，事前知識として物理法則を学習プロセスに統合する物

理深層学習（Physics-Informed Neural Network）が近年発展

してきている．Karniadakis et al. （2021） は，これを観測

データ（Data）と数学モデル（Physics）の融合と定義し，

データ不足の解消や物理的整合性の担保，さらには逆問題

解析の効率化が可能であると論じている[26]． 

Raissi et al.（2019)は，ニューラルネットワークの損失関数

に物理法則の残差を組み込むことを提案した[27]．また偏

微分方程式に含まれる微分項を数値微分（差分法）ではな

く，深層学習に組み込まれている自動微分を利用している．

これにより，メッシュフリーでの学習が可能となり，複雑

な計算グリッド生成のコストが削減された．地層処分分野

においても，質量保存則やエネルギー保存則といった物理

法則を組み込む物理深層学習が，説明可能性の観点からも

有望であると考えられる．  

 

 

Fig.1 Graphs showing the values of loss function for 

training and validation steps over the best-

performing CNN model of (a) P-wave velocity, (b) S-

wave velocity, (c) Vp/Vs ratio, and (d) electrical 

resistivity. Data from [20]. 

 

Fig.2 Images showing the representative results of 

regression activation mapping for (a) P-wave velocity, 

(b) S-wave velocity, (c) Vp/Vs s ratio, and (d) electrical 

resistivity as well as their overlays on the input rock 

images (e, f, g, and h, respectively). The overlayed 

heatmaps are normalized based on their maximum 

value and regions showing <10% of the maximum are 

colorless to highlight the important features. The 

bottom panels are the original rock images. Data 

from [20]. 

 

Ishitsuka et al. （2025） は，物理深層学習を岩手県葛根

田地熱フィールドに適用し，地下水流動と熱輸送の連成現

象における実用的な逆解析フレームワークを提案した[28]．

この研究では，限られたボーリングデータの学習過程にお

いて，観測データとの誤差に加え，質量保存則およびエネ

ルギー保存則の残差を最小化するよう拘束を与えた．さら

に坑井から離れた領域の不確実性を低減するために，電磁

探査データをソフトな拘束条件としてネットワークに入力

した．電気比抵抗と温度・空隙率を結びつける岩石物理モ

デルを仮定することで，従来のデータ駆動型ニューラルネ

ットワークと比較して，坑井データが存在しない領域や深

部における温度予測精度を有意に向上させることが示され

た．また逆解析された浸透率分布は，従来の逆解析で見ら

れるような不自然な不連続性を持たず，地質構造と整合的

な滑らかな分布を示した．この研究は，物理探査データと

物理法則を同時に活用することで，限られた直接観測デー

タからでも信頼性の高い地下 3次元モデルが構築可能であ

ることを実証した．このように少ない坑井データから地下
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の温度・圧力・浸透率の物理的に妥当な 3次元分布が推定

できれば，地層処分におけるサイト特性評価の高度化に対

しても重要な示唆を与えると考えられる． 

 

3.3 劣決定問題に有効な AI 

地球科学/工学分野では，上述のように対象となる物理場

（温度・圧力・流速・濃度など）が連続的かつ広大である．

その一方で，一般に地上に配置されるセンサーは空間的に

きわめて限定的である場合が多い．このような逆問題は，

未知数が観測数を圧倒的に上回る劣決定問題として知られ

ている．近年では CNNの適用も進んでいるが，CNNはセ

ンサー位置が不規則であったり，欠測によって配置が動的

に変化したりする実フィールドのデータへの柔軟性に欠け

るという構造的な弱点があった．これらの課題に対し，

Santos et al. (2023) は，自然言語処理分野で成功を収めてい

る Transformerアーキテクチャ，とくに Perceiver IO を応用

した新たなフィールド再構成フレームワーク「Senseiver」

を提案した[29]．Senseiver は観測データをグリッドとして

ではなく，位置情報と値のセットの点群として扱う．そし

て入力されたスパースな観測データ（座標および物理量）

をクロスアテンション機構を用いて固定サイズの潜在空間

へとエンコードする．その後，再びクロスアテンションを

用いて，潜在空間から任意の座標（再構成したいグリッド

全体）へとデコードする．通常の Transformer（Self-attention）

は入力数の二乗の計算量を要するが，Senseiverは潜在配列

を介することで線形の計算量に抑えられている．これによ

り，広大なフィールドに対しても効率的な処理が可能とな

った．また CNN とは異なり，入力センサーの数や配置が

学習時と異なっていてもモデルを再学習する必要がなく，

任意のスパース度合いに柔軟に対応できる．彼らは，アメ

リカ海洋大気庁の海面水温データセットおよび流体シミュ

レーション（2D渦流，3D乱流，3D多相流，汚染物質の移

流）を用いたベンチマークテストにおいて，Senseiverの性

能を検証した．その結果，クリギングをはじめとした従来

の補間手法と比較して圧倒的に高い精度を達成しただけで

なく，欠損補完に用いられる代表的な CNNモデル（U-Net

の変種など）と比較しても，とくに観測点が極端に少ない

状況下での微細構造の再現性において優位性を示した．さ

らに Senseiver は，センサーがランダムに配置された場合

や，センサー数が変動した場合でも安定した推論が可能で

あることが確認された．これは，センサーの故障や移動が

頻繁に起こる実環境のモニタリングシステムへの適用にお

いてきわめて重要な特性である．さらに特筆すべき結果と

して，空間全体のわずか 0.0006%/全時間ステップの 50%の

データ学習でデータセット全体を高精度に再構築できたこ

と，また観測されたベクトル量（速度）から観測されてい

ないスカラー量（汚染物質濃度）を高い精度で予測できた

ことが挙げられる．この研究は，劣決定性の強い地球物理

データの問題において，物理的な場の相関関係を Attention

マップとして学習することで，スパースな情報から全体像

を効率的かつ高精度に復元できることを示した．この技術

は，放射性廃棄物処分場のモニタリングのような，観測点

の設置が制限される深地層環境など，データの空間密度が

不足するあらゆる地球科学的課題に対して，強力なツール

となる可能性がある． 

 

4 おわりに 

 

本稿では，放射性廃棄物処分における地球物理学的モニ

タリング技術の現状と，そこにおける AI 利用の展望につ

いて概説した．物理探査技術は，弾性波速度や比抵抗の時

空間変化（4D geophysics）を通じて，地下の流体流動や亀

裂開閉をリアルタイムに捉える手段として成熟しつつある．

これに加え，近年の深層学習技術の導入は，従来の物理探

査が抱えていた「岩石物理モデルの不確実性」や「観測デ

ータの空間的制約」という課題に対し，新たな解決策を提

示している． とくに，説明可能 AI（RAM 等）の活用は，

ブラックボックスとなりがちな物性評価プロセスを可視化

し，説明性を担保する上で重要である．また，物理深層学

習や Transformer（Senseiver）を用いたフィールド再構成技

術は，物理法則や空間相関を学習に取り入れることで，限

られた観測点からでも信頼性の高い地下モデルの構築を可

能にする．これらの AI技術と物理探査の融合は，将来的な

処分場のデジタルツイン構築に向けた強力な基盤となり，

長期間にわたる処分場の安全性監視の高度化に貢献するこ

とが期待される． 
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