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DT B AR A fRNT 2 ZEL T 2 W ERiEfE 8, (3) Transformer 7 —X7 7 Fx ZIbA L, VO —1FREN»OW
FIGRRE PR T 2877 L— AU — 7 IZOWTHEHT 5. ZhbOEE, BT —% B3RS 2 GEHEEREE
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Geophysical monitoring is an essential technology for characterizing deep geological environments and understanding their long-
term behavior in the geological disposal of radioactive waste. Recently, the application of Artificial Intelligence (AI) has rapidly
progressed in this field. Beyond surrogate modeling for accelerating numerical simulations, significant innovations are emerging in
inverse analysis to estimate subsurface structures and properties from observational data. This paper first reviews recent trends in
geophysical monitoring, focusing on 4D visualization of subsurface changes using seismic and electromagnetic exploration methods.
Subsequently, it reviews the latest research on Al applications, specifically: (1) the improvement of interpretability in rock physics
models using Explainable Al applied to digital rock images; (2) Physics-Informed Neural Network, which integrates physical laws
(e.g., conservation laws) into the learning process to enable robust inverse analysis even with sparse data; and (3) a novel framework
using Transformer architectures to reconstruct entire physical fields from limited sensor data. These technologies contribute to the
advancement of monitoring systems and the development of digital twins in deep geological environments where observational data
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is limited.
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1 [XCHIC

TS PEBESEY) O Hi g ISy BT HE O SRR 72 © O8H %
OEMZEMERZFMT 2 - 0121E, T OFRARGEE) 268
DIl BHE TH D, L URNE TORERNE TR S
TIERL, ZORHZLOHEEITHEET Y V7106 &
2%V [1]. ZVE CTOWFFETIL, JFNLE OISR
B 2EAOFKMERECHFHIREE L8R > Y
— kA HEY I 2 v —ar (DEN) AR TH- 72
2, EROBRGY CIIEMER AR Y — U R S h, &
BRICIIRIRBRBE DT AN A FEBRED O TIT 5 Z & I13IEH
WCHREECTHD Z EBNHLNE R0l & 2 ClE, HERY
HAERRAE L (R RAECERIRRE) 215H L
7o, HUF OWRETRE O MEAFHMESER ShTns. HIE
R ECERIUS, R 2 ST D A N O 2T
EIRER DD, 2o OWMEORFEEZFIA T2 2 & T,
Mg Loy DAL & 72 DGPTSR T 2 # i o FRiTEAM
R, WG GEOMEE(LE=2 ) I 2 b EnD
ERRICITH 2N TE D EWfFEND.

AFGTIE, HERDERPEAIEE TIEOME L B)m & £ 9
AL LT, Ety T a XA buichsd TAL FIF ]
WCOWTRFTOMEREEZ L E 2 — L TWE 0, i
BEFM O HIBA 3 EFIC1T D AL FIHE WS &, Bl
Ralb—varEEEbT 5700 RFET L (Surrogate
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Modeling) BERTH D & Bbs[2]. ), HEkysEL
BB T O AL FUAREA TN D, ZO5E Tk
Surrogate Modeling O X S IZAJTET V%2 b L ITHERE H
N DI O F72 57, BT —2 o€ 7 v (H
IZRZ 7RV E) 2 HEE T 2 ITIZR N T AL F)
ABEA TS, AFTHE, ZIgFICEREZY LY
a—%179.

2 HhEkHpEE—4SYS

HERE PR EFIEEZH WA A=V 70, me
IVISVEBERED) DI SR EIZIBVNT, BICRARWHET
M EEREMTDDICAEHTH L. Hl21X Wynn and
Roseboom (1987) 1%, AiGFaiREICIB N TEEHDOR—
U ZREETO 2 &L, HFONY THREZERL S U X
IR DT L, DT DB IR A IR 7R HL T R
ZIFMECHRETCEIME—DFETH L L L TWVDH[3].
Juhlinand Palm (1999) %X, AW = —F L FRERDO = X AN HE
TEHEHERR O < TRETEMEEE 4 Eia L, i Off
BA722 A A= I LTZ[4]. 2 T s B A TR
BRI TV DR ONME & L —F L, HiFKkDEHER
BB & 70 DA A PRI P E TE 2 2 AL E 722
-72. F72 Ruckerand Fink (2007) (%, [E® Hanford Site
IZBWT, EEAGELIENA CTE UL HEGROIEND % 3
WL BRI K> T L 7Z[5].

SHITEFTIE, I OYBREFEEZ YA LT TR
HICEAG L, HOECHEBAR T O ZZMZE(bDE=42 ) »
7 (4D geophysics) MTHNTWHHIH H 5. Taira et al.
(2018) 1%, K[ California M@ Salton Sea HiZA 7 1 —/L K
WZRWT, RimEMEIO B CMHBEZES Z & T, A



ATy 7= R

DR IR (S WIELEITFY) OB LA fENT Liz[6]. %
OFER, HUERIZHE S MTRAOB N CHEEMMD LT3
T b, E-HEABAFRICAE O T AR O BS{THE SN L
TWAHZEEZHOMNT L. ZORmIEMEIOMENTIZ, #
BOREDERELEL L), [KaX hoE=4
VIFEELTER SN TWS. M5, Tsuji et al. (2021)
I, 597 N B E 2RI LRk CFY 80km Bt 7=
Wi T PR OB LA R L72[7]. EORER, HIEVRE
FTOMEECHERNIC L 5 M T ORIBU/KIEDOZELIZEE S
IREELALERAD Z TR L. ZOERERT, "
s X ol/Mbasncb O ETHBE I N TV AIS].
A IEDs (2018) 1%, WM T, WIkE
HTFICEAT DR PIC 2 T BRIEE 2 £ L, T
HIZAIZ A © #UF oK fafnEEZ5{b 2 BLHI L 72[9]. Johnson et
al. (2021) 1%, k[E South Dakota M Sanford Ht FHFFEfE#R C
DREFNAVHIZABHFE (Enhanced Geothermal System; EGS) (233
W, 3 RITERFEEEFEM L, BEKEAIEED BB
ORHEMAZ D T AZ A MIAH{ELZ[10]. b OF
B, HiFOREEE L Z P EREE TR X > TH~FH
MOV TNEAL LATEPFTEEZEEEKRL TN,
FEER DIRADSIRIERER G TH EMI N TH Y, Ozaki
(2023) IEHRHNPE S PIGEHE DMK N 2B & 50 L7 [11].
ZOX)ICHAAEOYEREAERN T, H AR
(Excavation Damaged Zone) MDBZIDHERF THIBHTX
TWa. 2D OBLEIMEE & AR EN S8 0 BIfR & 5T
WHIGZT D ENTENE, I E TEENRERN
K453 7T o To EHER LT OBUEZR N LIRFEIITTE D iR
BN OIREZER A (B3~ 2 MBS EE O 1] EXNHIFFC& 5.
FEEOH FERE CH L L2 BUIMEE 2 S BIZ /L2 e Hl
T OB B ORFZEMZ(L 2 TRIT 2121, HAaE
BTV E TN OB AT D MNERH D, ZNET
FATHIIEIE, RE O AEEREZBE L TR RITE
DHANONTREY[12], BMRERN 25T T
TIHEHEHTERNE WIS ER S 7. 2T LT,
FEL, EFOT VX IALENTCEE ST VISR
5 LT, HERMEIREARET — & & T OFAKIEICE B
THEAWEET VEBEL TEZ[13,14]. 20X H732%E
TIOVINHESL T EIUR, BERiOWmERET — ¥ ZfifRT 2
BRI X 0 e BB KRN T2 B 1 T e <, S
OEHME=4 U 71280 T b L EOBIPIEE A 5 He
TEEOE\CAHEET S Z LN WREL 2%, ARETIE, £
TIEUDITEAMIRET VR EbDTHD Al FIF & LT
EHOMWRERI L, ORI T — 2 ffT O m L
DFHO ATFIFIZOWTERFMIEE L Ea—7 5.

3 Al BFRFIDHESN

3.1 EREATTEE Al

WA, TRIEYE OB ZRFEIZE Y, AL IXERE
RHRSFTEAHEEZ LU D & T D227 5 0B TERAN
MR AR T L 91T o7 [15]. LL, —fRICHEREE
ETME, BHE I DEABONRT A —F R oI
MIEBSTH Y, ZOWNHEIWEIXARIC & - THfEREET
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b5, ANTHK L TREZOHIBELNTZONE NS A
FERRCHEIN T 0 B ARRBHTH B 720, 2 bid—
WIZT T v 7Ry 7 ALMEND [16]. ZOLH 7T T >
7Ry 7 AVEIE, #UEALY SR DN DA
PEDFRAERS, ME(ER L DG EEMIZIB W TRE RiE L
VD,

ZOXH RS, WHAEE Al OMZENTFEER %
LOTWD., SATFHE AL &%, Al OBWERHE B4 ARIA
HAEL, [FHEL, FHTED LT D700 HOHI
RFELFEI(16]. BIZITEAAS=2—T IRy NT—
27 (CNN) &AW HEGERERS B Clk, 7 ADREBRO &
&k ETHW L& R LT 5 FiE (Class Activation
Mapping; CAM) RRESN TS [17]. T, KEES
IAFB DR~ 7" L Global Average Pooling (GAP) J&®
BEAEZFALT, FFEDZ T AHWNF G Uiz mig e %
t—hvy 7L LTERTLHFETHS. CAM 1L GAP &
ZFFO CNN IZRESND E VI HINRH 7203, Zhvz
JEIEL72 Grad-CAM X, AREHREZHNDSZ L THLHD
% CNN 7 —F 7 27 F ¥ ~Djli Ff] & AT REIZ L 7-[18].

TIDDOIRD S  IINFEL A7 \CHEEE S TTVDA,
CAM OREEZ Bl RE~ & $K5E L 7= Regression Activation
Mapping (RAM) [19] HITFRE SN TN S, RAM X,
NINHEGHEOECHF T HFELFE L, THMHE
OKRANHEE D EOFEBICHET B 0E2THLT S.
Sawayamaetal. (2024) 1%, T & T ¥ X/ EABERITGH
THZ LT, MUREGHE (PO, S M) SLEXILEK
BLOMER & D X 5 208 A NS IR E N & 2 & L
L72[20]. S OB THEM LI AT —Z 13U T YA D
FUBNAEAEBETHD. R—0OT T X /Vaamig s Tic
ARREFRE[21,22]C P IHE (Vp), S BEIEEE (Vs), Vp/Vs,
BRSO 4 e E AT L, EORREEHEIT—2 & L
THEMLE. 2B, ZRENOMIET L O RAM 255 7-
W, [A—® CNN T —%7 27 F ¥ TENEN 4 X F—D
FEETST. BRBIOT—%7 7 F xid, IR
TEERAE B LT A Mr—AZRIR U, P IEGERE (Vp),
SHIEE (Vs), Vp/Vs, BRILEMZEN T o528 thif %
Fig.1 2777 &I, FeATHFE231IT R TH 5063
DL TWD L TE 5. ZofER%E2 S LI RAM (12
foe— vy 7 EAL LI (Fig2). e —h~v v
IERKMEICIESWCIES b S, KB Z2 g S 2 i
T 57, ERADOEEER CIXREKMEO 10%% 8 2 5 HE%
DAL ENTVWD (KB 10%AKTHOERITER) . 5
DIVTAER/NG, PGHEEE & S ORI, BN K & Aokt
THRERL, M Zeio/h S22k 7238 £ » B2
TN EMB 6L o7c (Figs.2e and f). i1k
T2 SNZER LD W Lnn, Ri-oERE (F
¥e) DSHUERGEE 2 KR L TW D AREMESHER S B, o
FUIE, SEATRIFZE TS S 4L TV 5 MU RO B DRI R
LHEAGTH DH[24]. —FH T, W/Vs ® RAM Tk 1Tl
7o ZERUCEAZ Y TTW5 (Fig2g). Vp/Vs IXHI T DFH]
BRAKESAHERIIA VB TRY, ZOMEE p/ivs
DZERFFEZ IS0 2 L Z RV D . FERTIK
BTk 7O L EFHOZBRICEREZ Y T TR Y, sk
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HIER BB

WE LR OIMEICRELR O PR LN E oI
(Fig.2h) . _h6@EWiWW®F@P&%@LTwéT
RRMER®H 0, WSRO EERRER - Ch D 2 & 3 EfF
7L EEFL?L[ZS] I HI, ZowAH kI RAM IEER DU
NFTENCIR > TR VR AR X TR Y, RFED Ess
@@5'5'\:75@%%%*&%@& LT Cc&EnZ&&RmLT
5. BRL LT, FFEE T 57200 RAM (3570 %
KBRS A R LT 2 & D, MR & BRI
PGS I L 2k 2 RRIE A B 7 B TREME DA S v & 72 0,
Z AUEHLES T — & @ Joint inversion/interpretation <CRFMER D
AR ERFTORICBRET RETHD Z LNTEIN
7-.

3.2 YHEREEFE

BB LR O L1, IREFENLELTLHE Y
ITT =B ERABT A ENMTLEES TRWEELHD.
F MR OT — X BRENVE T LTI, MBI H D H 0
TR ZIT O AREME S H 2D [26]. 2D OFREE R T 572
275 FETEER & U ORI R R T e R ICRAE T W

e  (Physics-Informed Neural Network) 23 IT4FR%% &

L“C%“Cb\'é. Karniadakis etal. (2021) %, Zi L z@iHl
7 —4 (Data) E#%%E7 /L (Physics) ORlA EEFRL
T — X REOFECEREE SO, & 3R
AT DAL ATRE T D & i LTV 5[26].
Raissi etal. (2019)1%, ==—7 /L * v b7 —7 QKB
(CWBRERI DR AL AT Z & R IR R LTZ[27]. £T21R
Wy RRICE EN DM HEEBEM Y (ZEm1E) TIER
G BEEFBICHAAENTWD HEME S ZFIH L TV D
THUZED, Ay a7 ) —TOFENRARELRY, ?’EZF’EE
FE 7Y » RAERKRO 2 A MBSHR S L7z, g L5y 55

BN TH, BEEFIR XA F—RER L Vo o
BRIz M IA T PRI E S, SR RTREIE OB B b
RAETHDLEEZEZDND.
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Fig.1 Graphs showing the values of loss function for

training and validation steps over the best-
performing CNN model of (a) P-wave velocity, (b) S-
wave velocity, (¢) Fp/Vs ratio, and (d) electrical

resistivity. Data from [20].
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regression activation mapping for (a) P-wave velocity,

Fig.2 Images showing the representative results
(b) S-wave velocity, (c) V'p/Vs s ratio, and (d) electrical
resistivity as well as their overlays on the input rock
images (e, f, g, and h, respectively). The overlayed
heatmaps are normalized based on their maximum
value and regions showing <10% of the maximum are
colorless to highlight the important features. The
bottom panels are the original rock images. Data

from [20].

(2025) 1%, WHERETE EZ S TFRER
AT ¢ —)L RIS L, HFKFEEh & Bifins 0@ iR
BNZBT D ER MR 7 L — 25U — 7 B4RR L7-[28].
ZOWFETIE, RoNFER—Y 7T —2OFFRRICE

W, BT —4 L oREICINZ, BEAFR XX

Ishitsuka et al.

NE—RFRIOEREZR/MET 2 X oWk E 5272, 6
(ZHUH D DEEN T SR O AR 2RI D 72 0is, EE

BWET—2% Y 7 NpWREHEE L TRy R —2IZAT
Lz, BRMEGERE - ZERELZ DT 2 E5 A MEE
TNUERET D2 LT, /ERkOT—FHEHE =2 —F /L3
v hU—7 LR LT, BT — 2 BT LR ORISR
IR DIRE THNSE 2 A RICM ESE2 Z L2REh
To. FIWRET SN EERAAIL, EROWRIT TR &
N5 &9 e RER AT EZ R, MBS &AM
RIBODRNAA AR LT, ZORIE, WIRET —# &
WHEAZ RIS T2 2 & T, RONEERNT —
G THIEFEMEOEOHT 3 RITET AR TH
HZEEIFHELIL. 2oLV =20 BT



ATy 7= R

DIREE - ES) - BEROWIRANZ 272 3 Roea A hHEE
TENIE, HBRITIT DA MR o & R
LTHHEERRBEEZDLEZLND.

3.3 HREMBICHZEAI

HIERRLE/ T2 8 T, Bl L 9 1Tkt ge & 72 5 Ry
(REE - JEJ) - P - JREE T2 &) BEFMNDILKTH 5.
FO—FT, —ICH EIZEE XN Db o —IFZE R
EDOOTIRENTHDHENZ . O LD R,
RAFD BRI Z AP BRI AHIEREE LTHL
T, T T CNN O b A TV 523, CNN Ik
VY —ENFHRATH o720, KENZ XK - TEE S EIHY
B LIZD T HET 4 — I ROT —F ~OFHRMEIZ R IT
HEVHEEN RN D o2, 2D OFEICH L
Santos etal. (2023) 1%, HARSFELIE THINZ D T
5 Transformer 7 —X7 7 F %, & <IZ Perceiver IO % )i A
LI=fi=7c7 4 —/V KR 7 L — AU —2 [Senseiver]
ZHEZ2 U72[29]. Senseiver [ ZHIT—4 % 7Y v FE LT
TIHeL, MEFREMOE Y FOSREE LTHRD . FL
TANESNIZ AR RRBHT — % (B L OWHR)
B RRAT TV a U E O TEEY A X ORTEZERH
~Nbkxra—RT5. ZO%, BRI/ RAT T v a sk
FAWT, BEZEMOEEOEE (FEfR LY v B
BAR) ~ & T a— N9 5. % O Transformer (Self-attention)
WIATIED " FOFEEEZFT 573, Senseiver (FIEIERLS
ENTHIETHRBOMERICIZONA TS, Zhick
D, IEKIRT 4 —/b Rk LT H RN AT RE & 72
o7z, F72 CNN L1IER”2Y, AJit s —0-CilE )
FERLE RS> TCOTHETNEZFHEETHHEN2L,
EEDOANR—AEENIEIIIHETE 5. HH1E, 74
U BEERRIT OWRKIRT — 2y FEBLOHIHR Y T =
L— a3 > (2D i@k, 3D &Lk, 3D 400, HEmE 0%
) W TF~—27 7 A MIEBUWT, Senseiver DM
HEAMEELT-. ZOfE, 7 VXU 721300 L LIk
DOFfFFEL & il U CERIMICEmVIEE 2 ER L2721 T
72, REMFTICHAV B RER L CNNET /L (U-Net
O E) L LT, & ARSI 7en
RIT TORIEE ORI O TEMEZRLEZ. &
512 Senseiver 1%, B Y —2RT U H AEE SRS
R0, B —HBEE LIBE THYRE LI HER FEET
HDHTERHERINT. ZhUE, U0l BEN
MEIC Z D EBRBEOT =4 U V7V AT A~OBAICE
WTCEDLDTEERBETHD. SHICHETIERERL
LT, ZZEMEEDO DT 0.0006%/EHE 2T~ 7D 50%0D
T—HFRTT =y FRKRERERBEICHEE XD
L, FRBHESNERY brvE GEE) O8I ST
RNAD T — & (GRWERE) 2EmWRBECTHTEx
ZENFETOND. ZOWEE, HBRIEMEO TR HIEKY B
T —X OREIZBWT, W25 OFBERfR % Attention
<~ T LTEETE LT, A=A REEN O 2R E
ZNEMPOEBEICETT TE D Z R L. Z OHf
1, R TEREEY O EOT =4 ) DX 5 7, B
ORENHIR SN HEMERTE /2 Y, 7 — &% OB ER
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RRET 2 & b D HERFHERIBRBEICK LT, sihy —b
LIRDAIREMEN B D .

4 HBbHYIC

ARETIE, FEVEBEEM I 31T 2 Bk BP0 T =
U TEMOBURE, FZIZBT5 Al FIHOREREIZS
WV U7z, B BT, DR SO LR BT O I
752t (4D geophysics) # i U T, HiFOWRATEICRE
ZBAAZ Y TN Z A M A D FEE L TR LDSOH 5.
RIS A, EFEOTREFEBAROEND, TEROWELLR
EREZ TV DEEWBLET VORMESENE] < T8HT
— X DOZEMAIHKI ) &V D FRBEICK L, B 7R BRI A 42
ARLTWD. LI, BBAHE Al (RAM %) OiF I,
7Ty 7 ALY PO IR v X 2 AL
L, A fIRT 5 ECHEHETHD. £z, WEEREY
E<° Transformer (Senseiver) % HV /27 1 — /L KA
T, PEERRZEMMEMAE FEICIRY AnSZ LT, R
BAVIZBR A B THEEEO R WHETET /L OREE 2 7]
RRIZT 2. 2 b D ALEAN & WEERE DAL, [k
GG DT V2V A ARG T T2 e Bl & 72 0,
EHIRIC O 205 G0 R EERO S EMICEIRT 5 2
LRI ENS.
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